История развития генетики как науки: как развивалась генетика человека и не только

Биология для студентов – 13. Основные этапы развития генетики

Первые идеи о механизме наследственности высказали ещё древнегреческие учёные – Демокрит, Гиппократ, Платон, Аристотель. Гиппократ полагал, что яйцеклетки и сперма формируются при участии всех частей организма и что признаки родителей непосредственно передаются потомкам.

Эту гипотезу в целом принял Аристотель, взгляды которого по разным вопросам философии и естествознания господствовали на протяжении всего средневекового периода в Европе. Автор первой научной теории эволюции Ж.Б. Ламарк также воспользовался идеями древнегреческих учёных для объяснения, постулированного им на рубеже XVIII-XIX вв.

принципа передачи приобретённых в течение жизни индивидуума новых признаков потомству.

Обратите внимание

В 80-х годах прошлого века теорию пангенезиса и саму идею о наследовании благоприобретённых признаков резкой критике подверг А. Вейсман (1834-1914). Вейсман принял и развил идею, согласно которой наследственный материал сосредоточен в ядерной субстанции клеток или в хромосомах.

Если учесть, что о поведении хромосом в митозе и мейозе к концу XIX в.

было уже довольно много известно, то не удивительно, что теория Вейсмана о зародышевой плазме во многом подготовила биологов к необходимости коренного пересмотра взглядов на наследственность сразу после вторичного открытия законов Менделя.

Годом рождения генетики считается 1900-й; она ровесница XX в. Известно, что становлению генетики как самостоятельной области биологии предшествовало необычное в истории науки событие. Фактически основные законы генетики были открыты в 1865 г. Г. Менделем. Однако, на протяжении последующих 35 лет они остались неизвестными большинству биологов, в том числе и Дарвину.

Вместе с тем у Менделя были предшественники-экспериментаторы. В их числе О. Сажрэ, И.Г. Кельрейтер, Т.Э. Найт, Ш. Ноден, Дж. Госс.

Они наблюдали и факты доминирования, и расщепление признаков родителей в потомстве, но их опыты не отличались той глубокой продуманностью и целенаправленностью, которые были характерны для исследований Менделя, в них отсутствовал строгий количественный учёт результатов.

Вторичное открытие законов Менделя принадлежит трём учёным – Г. де Фризу (Голландия), К. Корренсу (Германия), Э. Чермаку (Австрия).

Практически они одновременно получили факты, полностью подтверждающие закономерности наследования признаков, открытые Менделем на горохе.

Приоритет Менделя вскоре был восстановлен, и последующее десятилетие в истории генетики с полным правом может быть охарактеризовано как период торжества менделизма.

Важно

Название новой науки – генетика – было предложено в 1906 г. английским учёным В. Бэтсоном (от латинского genetikos – относящийся к происхождению, рождению). Датчанин В. Иоганнсен в 1909 г. утвердил в биологической литературе такие принципиально важные понятия, как ген (от греческого genos – род, рождение, происхождение), генотип, фенотип.

На этом этапе истории генетики была принята и получила дальнейшее развитие менделевская, по существу умозрительная, концепция гена как материальной единицы наследственности, ответственной за передачу отдельных признаков в ряду поколений организмов. Тогда же голландский учёный Г. де Фриз (1901) выдвинул теорию изменчивости, основанную на представлении о скачкообразности изменений наследственных свойств в результате мутаций.

В развитии генетики можно выделить 3 этапа:

  • Первый (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). 
  • Второй (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики.
  • Третий (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана).

Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации – Филиппов.

Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций.

Серебровский – показал сложное строение и дробимость гена. 

Источник: https://vseobiology.ru/genetika/1451-13-osnovnye-etapy-razvitiya-genetiki

Тема 1. Краткая история медицинской генетики

Введение

Медицинская генетика представляет собой область знаний о наследственности и изменчивости человека, имеющих непосредственное отношение к проблемам и задачам медицины.

Предметом ее изучения являются, в первую очередь, генетические основы патологических состояний человека.

Причиной появления наследуемых заболеваний и аномалий развития индивидуумов служат изменения генов и хромосом, возникающие под воздействием мутагенных факторов (мутагенов) внешней среды.

Возрастающее значение медицинской генетики определяется прежде всего тем обстоятельством, что активное вмешательство человека в окружающую среду приводит к ее интенсивному загрязнению и повышению уровня мутационной изменчивости организмов.

Особенности современного этапа генетического изучения человека связаны с широким использованием молекулярно – генетических, биохимических, цитогенетических и других новейших методов исследования.

Это привело к значительному прогрессу в знаниях о наследственности и изменчивости человека.

Раздел «Медицинская генетика» является составной и основной частью общей генетики и генетики человека, которые изучаются в старшей, а более углубленно в профильной школе.

Предложенный курс является основой для школьной «генетики» и для подготовки детей в ВУЗы, поэтому он включен в план курсовой подготовки учителей биологии.

В курсе изложены основные положения медицинской генетики.

Рассмотрены химические основы генетических явлений, молекулярные механизмы генетических процессов, наследственность и патология с подробным описанием генных, хромосомных и мультифакториальных болезней, объяснены причины их возникновения. Раскрыта роль медицинской генетики в профилактике врожденной и наследственной патологии, приведены конкретные указания по медико–генетическому консультированию.

Помимо теоретической части, после каждой темы имеется список контрольных вопросов и заданий, позволяющих анализировать усвоение полученной информации.

Учебно-тематический план

Темы Всего часов Из них
теоретич. практич.
Краткий курс медицинской генетики
Менделирующие признаки человека
Генетика пола
Взаимодействие генов
Изменчивость
Методы изучения наследственности человека
Наследственные болезни и их классификация
7.1 Хромосомные болезни
7.2 Генные болезни
7.3 Мультифакториальные болезни
Достижения генетики в диагностике и профилактике заболеваний
Итоговый контроль
Всего

Тема 1. Краткая история медицинской генетики

Медицинская генетика человека изучает закономерности наследственности изменчивости с точки зрения патологии. Она выявляет причины возникновения наследственных болезней, разрабатывает меры по профилактике действия мутагенных факторов на организм человека.

Задачами медицинской генетики являются:

1. Изучение характера наследственных болезней на молекулярном, клеточном уровнях и уровне целостного организма;

2. Дальнейшая разработка и усовершенствование методов генной инженерии с целью получения лекарственных веществ (инсулин, интерферон и др.) и генотерапии (замещение патологических генов их нормальными аллелями)

Совет

3. Интенсивное развитие методов пренатальной (дородовой) диагностики, позволяющих предотвратить рождение ребенка с тяжелой наследственной потологией.

Особый раздел медицинской генетики – клиническая генетика, исследующая вопросы патогенеза, клиники, диагностики, профилактики и лечения наследственных болезней.

Первые представления о передаче патологических наследственных признаков отражены в Талмуде (собрание догматических, религиозно-этических и правовых положений иудаизма, сложившихся в IV в. до н. э. — V в. н. э.), в котором указана опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечениями.

В XVIII в. описано наследование доминантного (полидактилия — много-пальность) и рецессивного (альбинизм у негров) признаков. В начале ХIХ в. несколько авторов одновременно описали наследование гемофилии.

Особого внимания заслуживает книга лондонского врача Адамса, вышедшая в 1814 г. под названием «Трактат о предполагаемых наследственных свойствах болезней, основанных на клиническом наблюдении». Через год она была переиздана под названием «Философский трактат о наследственных свойствах человеческой расы». Это был первый справочник для генетического консультирования.

В ней сформулированы несколько принципов медицинской генетики: «Браки между родственниками повышают частоту семейных (то есть рецессивных) болезней» или «Не все врожденные болезни являются наследственными, часть из них связана с внутриутробным поражением плода (например, за счет сифилиса)». Мотульски А. Г.

(1959) справедливо назвал Адамса «забытым основателем медицинской генетики».

В середине XIX в. в России над проблемами наследственных болезней работал В. М. Флоринский. Он изложил свои взгляды по усовершенствованию человеческого рода. Однако ряд положений был противоречив и неверен. В то же время В. М. Флоринский поднял и осветил некоторые вопросы медицинской генетики.

Обратите внимание

В своих трудах он правильно оценил значение среды для формирования наследственных признаков, подчеркнул вред родственных браков, показал наследственный характер многих патологических признаков (глухонемота, альбинизм, заячья губа, пороки развития нервной трубки).

Однако книга не нашла отклика среди медиков и биологов того времени, так как ученые еще не были подготовлены к восприятию этих идей.

В последней четверти XIX в. наибольший вклад в становление генетики человека внес английский биолог Ф. Гальтон (двоюродный браг Ч. Дарвина).

Он первым поставил вопрос о наследственности человека как предмете для изучения, обосновал применение геналогического, близнецового и статистического методов для ее изучения и заложил основы для будущего развития генетики человека. Принципиальная ошибка Ф.

Гальтона заключается в том, что во всех евгенических мероприятиях он рекомендовал не столько избавиться от патологических генов человека, сколько повысить количество «хороших» генов в человеческих популяциях путем предоставления преимущественных условий для размножения более одаренных, гениальных людей.

Существенный вклад в изучение генетики человека внес выдающийся английский клиницист А. Гаррод, хорошо знавший биологию и химию. Он первым обнаружил взаимосвязь между генами и ферментами и, применив эти знания к изучению патологических признаков, открыл врожденные нарушения обмена веществ.

Работы Адамса и других исследователей того времени не привлекли внимания широкого круга специалистов потому, что наследственность тогда в основном изучалась на растениях. Наблюдения над человеком не учитывались.

Между тем, если бы результаты исследований по генетике человека были известны Менделю и другим ученым, изучавшим наследование на ботаническом материале, то открытие законов генетики и их признание могли бы произойти гораздо раньше.

В 1865 г. чешский ученый Г.

Мендель глубоко и последовательно с математическим описанием в опытах на горохе сформулировал законы доминирования для первого поколения гибридов, расщепления и комбинирования наследственных признаков в потомстве гибридов. Этот важнейший вывод доказал существование наследственных факторов, детерминирующих развитие определенных признаков. Работа Г. Менделя оставалась непонятой 35 лет.

Важно

В 1900 г. три ботаника независимо друг от друга, не зная работы Г. Менделя, на разных объектах повторили его открытие: Де Фриз из Голландии -в опытах с энотерой, маком и дурманом, Корренс из Германии с кукурузой, Чермак из Австрии – с горохом.

Поэтому 1900 г. считается годом рождения генетики. С него начался период изучения наследственности, отличительной чертой которого стал предложенный ранее Г.

Менделем гибридологический метод, анализ наследования отдельных признаков родителей в потомстве.

В 1905 г. В. Бэтсон предложил термин «генетика», а в 1909 г. В. Иогансен предложил термин «ген» (от греческого genes – рождающий, рожденный) для обозначения наследственных факторов. Совокупность всех генов у одной особи ученый назвал генотипом, совокупность признаков организма – фенотипом.

Читайте также:  Сканирование текста с фотографии: как и чем распознать отсканированный текст с картинки онлайн программы, обработка, корректировка онлайн с картинки в ворд

В 1908 г. Г. Харди и В. Вайнберг показали, что менделевские законы объясняют процессы распределения генов в популяциях (от лат. populus -население, народ). Ученые сформулировали закон, который описывает условия генетической стабильности популяции.

В России в 1919 г. Ю. А. Филипченко организовал первую кафедру генетики в Ленинградском университете. В это время работал молодой Н. И. Вавилов, сформулировавший один из генетических законов -закон гомологических рядов наследственной изменчивости.

Н. К. Кольцов, Ю. А. Филипченко и некоторые другие ученые в рамках евгенической программы проводили работы по генетике одаренности, изучая родословные выдающихся личностей. В этих исследованиях были допущены некоторые методические ошибки. Однако по сравнению с генетическими исследованиями в других странах в период расцвета евгеники подходы наших ученых были во многом верными.

Так, Н. К. Кольцов и Ю. А. Филипченко правильно поставили вопрос о значении социальной среды в реализации индивидуальных способностей. Они полностью отвергли насильственный путь улучшения природы человека. В период проведения евгенических исследований в СССР были собраны интересные родословные выдающихся личностей (А. С. Пушкина, Л. Н. Толстого, А. М. Горького, Ф. И. Шаляпина и др.

).

Совет

Конец 20 – начало 30-х годов характеризуются довольно большими успехами в развитии генетики. К этому времени стала общепризнанной хромосомная теория наследственности. Т. Морган и его ученики экспериментально доказали, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.

Теоретическая и экспериментальная работы С. С. Четверикова (1926, 1929) положили начало современной генетике популяций. Большой вклад в изучение этого раздела внесли труды Р. Фишера (1931), С. Райта (1932), Н. П. Дубинина и Д. Д. Ромашова (1932), Дж. Е. Холдейна (1935) и др.

В ряде стран начала развиваться медицинская генетика. В нашей стране особого упоминания заслуживает Медико-генетический институт, который функционировал с 1932 по 1937 г.

При нем был организован центр близнецовых исследований, в котором широко изучались количественные признаки у человека и болезни с наследственным предрасположением (диабет, гипертоническая болезнь, язвенная болезнь и др.).

Правильное применение разных методов исследования (клинико-генеалогического, близнецового, цитогенетического, популяционно-статистического) позволило коллективу занять передовые рубежи генетики.

В 20-30-х годах работал талантливый клиницист и генетик С. Н. Да-виденков (1880-1961), который внес свой вклад в изучение наследственных нервных болезней, а также первым в нашей стране начал проводить медико-генетическое консультирование и разрабатывать методику этого вида медицинской помощи.

К концу 30 – началу 50-х годов интерес к генетике человека снизился.

В это время в СССР медико-генетические исследования были практически прекращены. В течение этого периода вышла только книга С. Н. Давиденкова «Эволюционно-генетические проблемы в невропатологии» (1947). Возобновились исследования лишь в начале 60-х годов.

С 1959 по 1962 г. количество публикаций, конференций, симпозиумов по генетике человека быстро возросло. Стало ясно, что наследственные болезни по своей природе гетерогенны, различны не только с клинической, но и с генетической точки зрения. Один и тот же фенотип болезни может быть обусловлен мутационным изменением различных белков (генокопия).

Обратите внимание

После того как было установлено, что ДНК является носителем наследственной информации, ученые направили усилия на изучение молекулярной природы и генетической значимости ее отдельных компонентов.

Исследование ДНК проводилось многими учеными. Весь накопленный комплекс биологических и физико-химических знаний привел к тому, что в 1953 г. Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК. Затем бурно начала развиваться молекулярная и биохимическая генетика человека, а также иммуногенетика.

Развитие цитогенетики человека является ярким примером значения фундаментальных исследований для практического здравоохранения. Так, в 1956 г. А. Леван и Дж.

Тио установили, что у человека хромосомный набор состоит из 46 хромосом, а через три года были открыты хромосомные болезни.

Очередным переломным моментом в цитогенетике человека была разработка методов дифференциальной окраски хромосом.

Следующим шагом в развитии современной генетики явилось картирование (определение места положения) генов в хромосомах человека.

Успехи цитогенетики, генетики соматических клеток обеспечили прогресс в изучении групп сцепления (групп генов, наследующихся совместно). В настоящее время у человека известно 24 группы сцепления.

Работы по изучению сцепления генов дают новые практические возможности в диагностике наследственных болезней и медико-генетическом консультировании.

Важно

Таким образом, в истории медицинской генетики можно выделить несколько основных этапов:

1) открытие законов Г. Менделя и изучение наследственности на уровне целостного организма;

2) изучение генетики на хромосомном уровне и открытие сцепленного наследования Т. Морганом и его учениками;

3) начало развитию современной генетики популяции дали теоретические и экспериментальные работы С.C. Четверикова;

4) развитие молекулярной генетики началось с построения пространственной структуры молекул ДНК Д. Уотсоном и Ф. Криком.

В настоящее время наследственность изучается на всех уровнях: молекулярном, клеточном, организменном и популяционном.

Источник: https://studopedya.ru/1-107025.html

История медицинской генетики (стр. 1 из 8)

Министерство обороны России

Военно-медицинская академия имени С.М. Кирова

Дисциплина: История Медицины

РЕФЕРАТ

Тема: «История медицинской генетики»

Санкт-Петербург

2010

Вступление

Медицинская генетика — составляющая часть и область медицины.

История медицинской генетики — составляющая часть истории медицины.

Сложно переоценить значение медицинской генетики как науки на современном этапе развития человечества.

Открытия медицинской генетики продвинули медицину в целом на новый уровень.

Медицинская генетика (или генетика человека, клиническая генетика, генопатология) — область медицины, наука, которая изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных и патологических признаков, зависимость заболеваний от генетической предрасположенности и условий окружающей среды.

Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, разработка путей предотвращения воздействия негативных факторов среды на наследственность человека.

Совет

Задачей же данной работы является рассмотрение всех аспектов развития данной науки:

· этапы ее становления, каждый из которых связан с именем талантливого ученого или группой ученых

· проблемы и трудности на пути развития

Генетика — это наука о наследственности и наследственной изменчивости.

Когда мы говорим о наследственности, то имеем в виду, во-первых, материальные носители наследственности, в широком смысле их биологическую природу; во-вторых, закономерности передачи этих материальных носителей наследственности в череде поколений, что обеспечивает воспроизведение существующего разнообразия жизни на Земле, а, в-третьих, их способность направлять и контролировать индивидуальное развитие каждой особи, ее онтогенез.

Следовательно, понятие наследственности является многозначным.

Так же многозначно понятие наследственной изменчивости, так как оно включает закономерности возникновения изменений в наследственном материале, наследования этих изменений и их влияния не только на онтогенез отдельной особи, но и на популяцию или даже вид в целом. Наследственная изменчивость связывает, таким образом, генетику и эволюционное учение.

« Доменделевский » период

Учение о наследственности человека зарождалось в недрах медицины из эмпирических наблюдений семейных и врожденных болезней. Уже в трудах Гиппократа отмечалась роль наследственности в происхождении болезней: «…

эпилепсия, как и другие болезни, развиваются на почве наследственности; и действительно, если от флегматика происходит флегматик, от жёлчного — жёлчный, от чахоточного — чахоточный, от страдающего болезнью селезёнки — страдающий болезнью селезёнки, то что может помешать, чтобы болезнь, которою страдают отец и мать, поразила бы также одного из их детей». Однако в дальнейшем вопрос о роли наследственности в происхождении болезней был забыт, и на первое место в теориях медицины выдвигались внешние факторы этиологии. Лишь в XVIII—XIX веках появились отдельные работы о значении наследственности в происхождении болезней (полидактилии, гемофилии, альбинизма).

Определённо можно сказать, что во второй половине XIX века утвердилось понятие о патологической наследственности у человека, которое было принято многими врачебными школами.

С пониманием патологической наследственности зародилась концепция о вырождении человеческого рода и необходимости его улучшения, причём одновременно (1865) и независимо друг от друга её высказали В.М.

Флоринский в России и Ф. Гальтон в Англии.

Предпосылки развития учения о наследственности человека в XIX веке вытекали из биологических открытий, революционизировавших развитие медицины: клеточной теории (Теодор Шванн) и доказательства клеточной преемственности (Рудольф Вир-хов); оформления идеи развития организмов (онто- и филогенез); объяснения эволюции на основе явления естественного отбора и борьбы за существование (Чарльз Дарвин).

Не меньшее влияние, чем биологические открытия, на развитие учения о наследственных болезнях оказали общемедицинские предпосылки. В XIX веке изучение причин заболеваний стало главным направлением в медицине.

Начался период нозологизации болезней, в том числе наследственных. Например, описаны болезнь Дауна, нейрофиброматоз, врождённая дисплазия соединительной ткани и др.

Обратите внимание

Изучение патологических симптомов сменилось изучением нозологических форм болезненных процессов, которые можно было прослеживать в родословных как дискретные формы.

Несмотря на то что в XIX веке учение о наследственных болезнях и закономерностях наследственности человека существенно продвинулось, в целом ещё было много противоречий.

В большинстве работ этого периода факты и ошибочные представления были перемешаны. Критериев правильной интерпретации наследования болезней ещё не существовало.

Генетика человека находилась на «донаучной» стадии развития. Этот период можно назвать доменделевским.

Н аучный этап развития

Открытия Г.Менделя

Собственно научный этап развития генетики начинается с работы Г.Менделя «Опыты над растительными гибридами», опубликованной в 1865 г.

Суть этой работы заключается не в установлении правил расщепления признаков в потомстве от скрещивания гибридов у гороха, часть которых была выявлена предшественниками Менделя, а в том, что в результате количественного анализа расщепления по отдельным четким качественным признакам у потомства ученый предположил существование элементарных единиц наследственности, не смешивающихся с другими такими же единицами и свободно комбинирующимися при образовании половых клеток.

Открытие Менделя оставалось забытым 35 лет, но после его «переоткрытия» в 1900 г.-развитие генетики пошло более быстрыми темпами. Генетика стала превращаться в науку.

Только с переоткрытием законов Менделя в 1900 г. возникли уникальные возможности «инвентаризации» наследственных болезней. На примере то одной, то другой болезни непрерывно подтверждались законы Менделя либо врачами, либо биологами. Наследственность как этиологическая категория прочно вошла в медицину. Природа и причины многих болезней стали понятными.

Открытия Т. Моргана

Важно

Может быть, после Менделя самой важной вехой в развитии генетики были работы Томаса Моргана и его учеников А.Стертеванта, К.Бриджеса и Г.Меллера, выполненные на дрозофиле.

Работы Моргана заложили основы хромосомной теории наследственности, они показали, что ограничения в свободной комбинаторике некоторых генов обусловлены расположением этих генов в одной хромосоме и их физическим сцеплением.

Морганом было установлено, что сцепление генов, расположенных в одной хромосоме, не является абсолютным. Во время мейоза хромосомы одной пары могут обмениваться гомологичными участками между собой с помощью процесса, который называется кроссинговером. Чем дальше друг от друга расположены гены в хромосоме, тем чаще они разделяются кроссинговером.

Читайте также:  Оформление презентаций диплома: общие требования и правила, особенности

На основе этого феномена была предложена мера силы сцепления генов — процент кроссинговера — и построены первые генетические карты хромосом для разных видов дрозофилы. У дрозофилы гигантские хромосомы слюнных желез представляли собой не только идеальный объект для цитологического изучения.

Морган и его сотрудники использовали хромосомные мутации как цитологические маркеры расположения генов. Собственно такое совмещение цитологического и генетического изучения хромосом и создало особый раздел генетики, который называется цитогенетикой.

Чтобы стало ясным, насколько важным для генетики всех высших организмов является установление точного расположения генов в хромосомах, можно указать, что в Проекте «Геном человека» создание точных генетических карт было и даже остается одним из основных направлений исследований.

Впервые предположение о том, что хромосомы являются носителями наследственной информации в клетке, было высказано еще в 1902 г. Т.Бовери, В.Сэттоном и К.Корренсом, но оно основывалось на цитологических доказательствах поведения хромосом во время деления клеток.

Евгеника

В первых двух десятилетиях XX века возникла эйфория от менделевской интерпретации многих болезней, в результате которой была существенно преувеличена роль наследственности в формировании поведения человека и в наследственной отягощённости населения.

Совет

Концепция обречённости и вырождения семей с наследственной патологией стала ведущей для объяснения отягощённости общества потомством таких больных. Диагноз наследственной болезни считался приговором больному и даже его семье. На этом фоне стала набирать силу евгеника — ранее сформулированное Ф.

Гальтоном направление (или даже наука) об улучшении породы (или природы) человека.

Под негативной евгеникой понимали ту её часть, которая ставила своей целью освобождение человечества от лиц с наследственной патологией путём насильственной стерилизации. Евгеника в конечном счёте «обосновывала» насильственное ограничение репродуктивной свободы. Правильнее считать евгенику не наукой, а социальным или общественным движением.

Евгенические идеи необычайно быстро распространились, и более чем в 30 странах (США, Германия, Дания, Швеция и др.

) приняли форму жёстких законов о принудительной стерилизации лиц, родивших детей с эпилепсией, олигофренией, шизофренией и другими заболеваниями. В период с 1907 до 1960 г.

в США было насильственно стерилизовано более 100 000 человек. В Германии за первый полный год нацистской евгенической программы было стерилизовано 80 000 человек.

В целом евгеника сыграла отрицательную роль в развитии генетики и медико-биологической науки.

Хромосомная теория

В истории науки случалось, что ошибочное положение на долгие годы становилось прописной истиной только по­тому, что никто не удосужился его проверить. До 1955 года все ученые были твердо убеждены в том, что геном челове­ка состоит из 24 пар хромосом.

Ошибка произошла в 1921 году, когда техасец Теофилус Пейнтер (Theophilus Painter) сделал препаративные срезы семенников двух афроамери-канцев и одного белого, кастрированных по решению суда за «слабоумие и антиобщественное поведение», зафикси­ровал срезы в химических препаратах и микроскопировал. Пейнтер долго пытался подсчитать скучившиеся хромосо­мы в сперматоцитах несчастных мужчин и наконец решил, что их 24. «Я пришел к убеждению, что это число верно», — скажет он позже. Интересно, но другие ученые затем по­вторяли подсчеты, используя разные методы, и тоже схо­дились во мнении, что хромосом 24.

Источник: http://MirZnanii.com/a/343894/istoriya-meditsinskoy-genetiki

История развития генетики (кратко). История развития генетики в России

Образование 18 мая 2015

Биология – очень объемная наука, которая охватывает все стороны жизни каждого живого существа, начиная от строения его микроструктур внутри тела и заканчивая связью с внешней средой и космосом. Именно поэтому разделов у этой дисциплины очень много.

Однако одним из самых молодых, но перспективных и имеющих сегодня особенно важное значение является генетика. Она зародилась позже остальных, но сумела стать самой актуальной, важной и объемной наукой, имеющей собственные цели, задачи и объект изучения.

Рассмотрим, какова история развития генетики и что представляет собой эта ветвь биологии.

Генетика: предмет и объект изучения

Свое название наука получила только в 1906 году по предложению англичанина Бэтсона.

Определение ей можно дать следующее: это дисциплина, изучающая механизмы наследственности, ее изменчивости у разных видов живых существ.

Следовательно, основной целью генетики является выяснение строения структур, ответственных за передачу наследственных признаков, и исследование самой сути этого процесса.

Объектами изучения являются:

  • растения;
  • животные;
  • бактерии;
  • грибы;
  • человек.

Таким образом, она охватывает вниманием все царства живой природы, не забыв ни одного из представителей. Однако на сегодняшний день максимально поставлены на поток исследования именно одноклеточных простейших существ, все эксперименты по генетике проводятся на них, а также на бактериях.

Чтобы прийти к имеющимся теперь результатам, история развития генетики прошла длинный и тернистый путь. В разные периоды времени она подвергалась то интенсивному развитию, то полному забвению. Однако в итоге все же получила достойное место среди всей семьи биологических дисциплин.

История развития генетики кратко

Чтобы охарактеризовать основные вехи становления рассматриваемой ветви биологии, следует обратиться в не столь далекое прошлое. Ведь свое начало генетика берет из XIX века. А официальной датой ее зарождения как полностью обособленной дисциплины считается 1900 год.

Кстати, если говорить совсем уже об истоках, то следует заметить попытки селекции растений, скрещивания животных еще очень давно. Ведь этим занимались земледельцы и скотоводы еще в XV веке. Просто происходило это не с научной точки зрения.

Таблица “История развития генетики” поможет освоить ее главные исторические моменты становления.

Период развития Основные открытия Ученые
Начальный (вторая половина XIX века) Гибридологические исследования в области растений (исследование поколений на примере вида гороха) Грегори Мендель (1866 год)
Открытие процесса мейоза и митоза, изучение полового размножения и его значения для закрепления и передачи признаков от родителей к потомству Страсбургер, Горожанкин, Гертвиг, Ван-Беневин, Флемминг, Чистяков, Вальдейр и другие (1878-1883 гг.)
Средний (начало-середина XX века) Это период максимально интенсивного роста развития генетических исследований, если рассматривать историческую эпоху в целом. Ряд открытий в области генетического аппарата клетки, его значения и механизмов работы, расшифровка строения ДНК, разработка методов селекции и скрещивания, закладывание всех теоретических основ генетики приходится именно на этот период времени Множество отечественных ученых и генетиков со всего мира: Томас Морган, Навашин, Серебряков, Вавилов, де Фриз, Корренс, Уотсон и Крик, Шлейден, Шванн и многие другие
Современный период (вторая половина XX века и до сегодняшнего дня) Этот период характеризуется рядом открытий в области микроструктур живых существ: детальное изучение строения молекул ДНК, РНК, белка, ферментов, гормонов и прочее. Выяснение глубинных механизмов кодирования признаков и передача их по наследству, генетический код и его расшифровка, механизмы трансляции, транскрипции, репликации и так далее. Огромное значение имеют дочерние генетические науки, которых именно в этот период сформировалось немало В. Эльвинг, Ноден и другие

В приведенной выше таблице история развития генетики кратко отображена. Далее рассмотрим более подробно главные открытия разных периодов.

Видео по теме

Основные открытия XIX века

Главными трудами этого периода стали работы трех ученых из разных стран:

  • в Голландии Г. де Фриз – изучение особенностей наследования признаков у гибридов разных поколений;
  • в Германии К. Корренс – сделал то же самое на примере кукурузы;
  • в Австрии К. Чермак – повторил опыты Менделя на посевном горохе.

Все эти открытия базировались на написанных 35 годами ранее работах Грегори Менделя, который проводил многолетние исследования и все результаты фиксировал в научных трудах. Однако эти данные не вызвали интереса у его современников.

В этот же период история развития генетики включает в себя ряд открытий по изучению половых клеток человека и животных.

Доказано, что некоторые признаки, которые передаются по наследству, закрепляются без изменений.

Другие же являются индивидуальными для каждого организма и выступают результатом приспособления к условиям окружающей среды. Работы проводились Страсбургером, Чистяковым, Флеммингом и многими другими.

Развитие науки в XX веке

Так как официальной датой рождения считается 1900 год, то неудивительно, что именно в XX веке вершилась история развития генетики. Гибридологический метод исследования, созданный к этому времени, позволяет медленно, но верно получать потрясающие результаты.

Создание новейших достижений техники дает возможность заглянуть в микроструктуры – это еще более продвигает генетику вперед в развитии. Так, были установлены:

  • структуры ДНК и РНК;
  • механизмы их синтеза и репликации;
  • молекула белка;
  • особенности наследования и закрепления;
  • локализация отдельных признаков в хромосомах;
  • мутации и их проявления;
  • появился доступ к управлению генетическим аппаратом клетки.

Наверное, одним из самых важных в этот период открытий стала расшифровка ДНК. Это было сделано Уотсоном и Криком в 1953 году. В 1941-м было доказано, что признаки кодируются в белковых молекулах. С 1944 по 1970 г. сделаны максимальные открытия в области строения, репликации и значения ДНК и РНК.

Современная генетика

История развития генетики как науки на современном этапе проявляется в интенсификации разных ее направлений. Ведь сегодня существуют:

  • генная инженерия;
  • молекулярная генетика;
  • медицинская;
  • популяционная;
  • радиационная и прочие.

Вторую половину XX и начало XXI века для рассматриваемой дисциплины принято считать геномной эрой. Ведь современные ученые вмешиваются уже непосредственно в весь генетический аппарат организма, учатся изменять его в нужную сторону, управлять происходящими там процессами, снижать патологические проявления, купировать их в корне.

История развития генетики в России

В нашей стране рассматриваемая наука начала свое интенсивное становление лишь во второй половине XX века. Все дело в том, что долгое время наблюдался период застоя. Это времена правления Сталина и Хрущева.

Именно в эту историческую эпоху случился раскол в ученых кругах. Т. Д. Лысенко, имевший власть, заявил о том, что все исследования в области генетики недействительны. А сама она не является наукой вообще.

Заручившись поддержкой Сталина, он всех известных генетиков того времени отправил на смерть. Среди них:

  • Вавилов;
  • Серебровский;
  • Кольцов;
  • Четвериков и другие.

Многие вынуждены были подстраиваться под требования Лысенко, чтобы избежать смерти и продолжать исследования. Некоторые эмигрировали в США и другие страны.

Только после ухода с поста Хрущева генетика в России получила свободу в развитии и интенсивный рост.

Отечественные ученые-генетики

Самыми значительными открытиями, которыми может гордиться рассматриваемая наука, стали и те, что осуществились нашими соотечественниками. История развития генетики именно в России связана с такими именами, как:

  • Николай Иванович Вавилов (учение об иммунитете растений, закон гомологических рядов и прочее);
  • Николай Константинович Кольцов (химический мутагенез);
  • Н. В. Тимофеев-Ресовский (основоположник радиационной генетики);
  • В. В. Сахаров (природа мутаций);
  • М. Е. Лобашев (автор методических пособий по генетике);
  • А. С. Серебровский;
  • К. А. Тимирязев;
  • Н. П. Дубинин и многие другие.

Этот список можно продолжать еще долго, ведь во все времена русские умы были великими во всех отраслях и научных областях знаний.

Читайте также:  Самые эффективные методы изучения английского языка: лучшие способы и методики

Направления в науке: медицинская генетика

История развития медицинской генетики берет свое начало гораздо раньше, чем общая наука. Ведь еще в XV-XVIII веках были доказаны явления передачи по наследству таких заболеваний, как:

  • полидактилия;
  • гемофилия;
  • прогрессирующая хорея;
  • эпилепсия и прочие.

Была установлена отрицательная роль инцеста в сохранении здоровья и нормального развития потомства. Сегодня этот раздел генетики является очень важной областью медицины. Ведь именно он позволяет контролировать проявления и купировать многие генетические мутации еще на стадии эмбрионального развития плода.

Генетика человека

История развития генетики человека берет свое начало намного позже общей генетики. Ведь заглянуть внутрь хромосомного аппарата людей стало возможным лишь при использовании самых современных технических устройств и методов исследования.

Человек стал объектом генетики в первую очередь с точки зрения медицины. Однако основные механизмы наследования и передачи признаков, закрепления и проявления их у потомства для людей ничем не отличаются от таковых у животных. Поэтому не обязательно объектом исследования использовать именно человека.

Источник: fb.ru

Источник: https://monateka.com/article/186417/

Генетика как наука: история развития, основные понятия, значение в жизни человека

Генетика – это наука, изучающая закономерности наследования генетической информации и изменчивость организмов. Основоположник генетики – австрийский ученый Грегор Мендель.

История развития генетики

Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.

Выделяют три основных этапа в развитии генетики:

Этап I

Первый этап связан с Грегором Менделем и открытием законов наследственности. Многочисленные исследования и скрещивания животных и растений уже вначале XX ст. полностью подтвердили теории, выдвинутые Менделем. Вклад в развитие генетики сделал биолог В. Иоганнсен, который описал такие понятия как «генотип», «фенотип» и «популяция».

Этап II

Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости.

Этап III

Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.

В 50-60 годах прошлого столетия Ф.Крик и Дж.Уотсон разработали модель ДНК, которая представляла собой двойную спираль, она дала возможность проследить репликацию молекулы ДНК. Это открытие стало выдающимся событием века.

В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.

Основные понятия генетики

Наследственность — способность одного поколения живых организмов передавать свои характеристики следующему.

Изменчивость — приобретение потомством отличительных признаков в процессе индивидуального развития.

Признаки — особые черты строения организма, которые формируются на протяжении жизни и зависят от генетического фона и условий окружающей среды.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Обратите внимание

Ген — наименьшая структурная и функциональная единица наследственности. Входит в состав молекулы ДНК и отвечает за образование и передачу конкретного свойства.

Генотип — набор генов, унаследованных от родителей, которые под влиянием внешних факторов определяют фенотип организма.

Аллельные гены — гены, занимающие одинаковые локусы в гомологичных хромосомах.

Гомозиготы— особи, несущие аллельные гены с одинаковой молекулярной основой.

Гетерозиготы — особи, несущие аллельные гены различной молекулярной структуры.

Законы и понятия генетики

Законы генетики

Основные законы были сформулированы Менделем, которые он вывел опытным путем, исследуя закономерности наследования на растениях.

Закон единообразия гибридов первого поколения.

Суть закона заключается в следующем: если скрестить два гомозиготных организма, которые кодируют разное проявление одного признака, то потомки в первом поколении будут единообразны. Аллель, который проявился, является доминантным, он подавляет рецессивный признак.

Определить это явление Менделю удалось, используя чистые линии гороха с белыми и пурпурными цветами. После скрещивания, все потомство имело пурпурный окрас цветков.

Закон расщепления.

Скрещивание гетерозигот, полученных в первом поколении, дает расщепление по такому принципу:

  • фенотип 3:1;
  • генотип 1:2:1.

Так, менделевский закон подтвердил, что рецессивные признаки никак не изменяются и не теряются, а просто не проявляются в сочетании с доминантным геном.

Закон независимого наследования признаков.

Скрещивание двух гетерозиготных особей, которые отличаются более чем по двум признакам, дает поколение с разнообразной и независимой комбинацией генов.

Разделы генетики

Классическая генетика изучает закономерности передачи генов.

Цитогенетика исследует структуру хромосом и их участие в передаче наследственной информации.

Молекулярная генетика исследует молекулярные основы наследования признаков путем изучения строения ДНК и РНК.

Биохимическая генетика направлена на изучение влияния генетических факторов на биохимические процессы в живом организме.

Медицинская генетика – изучает наследственные заболевания и разрабатывает эффективное лечение.

Значение генетики

Все чаще рождаются дети с наследственными аномалиями развития. Врожденная патология сказывается на деятельности жизненно важных органов и приводит к росту ранней детской смертности.

Неблагоприятная экологическая обстановка вредные привычки родителей приводят к разного рода мутациям, которые сказываются на здоровье человека.

На сегодняшний день ученые-генетики сделали много открытий в области медицины, селекции животных и растений, что позволяет целенаправленно влиять на наследственность организмов, предотвращая мутационные процессы.

Многие заболевания, как показали исследования, носят генетическую природу:

  • Увеличение количества хромосом (синдром Клайнфельтера);
  • уменьшение (синдром Шерешевского-Тернера);
  • болезни сцепленные с хромосомами (гемофилия, дальтонизм);
  • нарушения обмена веществ (галактоземия).

Теперь, зная причину развития заболевания, ученые разрабатывают методы предотвращения мутаций, которые ведут к врожденным аномалиям.

Селекция животных и растений уже стала самостоятельной наукой, но в основе ее лежат генетические закономерности наследования. Новые сорта растений с высокой урожайностью, ценные породы животных удалось получить, используя законы наследственности и изменчивости.

Фармацевтическая промышленность не обходится без генетической инженерии. Продукция антибиотиков стала возможной благодаря генетической модификации микроорганизмов-продуцентов. Так удалось многократно увеличить скорость синтеза лекарственных средств и уменьшить затраты на производство.

Оцените, пожалуйста, статью. Мы старались:) (1

Источник: https://animals-world.ru/genetika/

История генетики — Науколандия

История генетики как науки началась не так уж давно, примерно со второй половины XIX века, с работ чешского монаха Грегора Менделя.

До этого люди не знали, что лежит в основе наследственности и изменчивости организмов. Никаких систематических исследований в этой области не проводилось.

С древних времен существовали две гипотезы о том, почему потомки похожи на своих предков. Это гипотезы прямого и непрямого наследования.

Важно

По гипотезе прямого наследования предполагалось, что каждая часть тела родителя, каждая его клетка передает особенности своего строения потомку. Гипотеза непрямого наследования исходила из того, что не все части организма участвуют в образовании половых продуктов, а они образуются обособлено, поэтому прижизненные изменения родителя не передаются потомкам.

Чарльз Дарвин придерживался первой гипотезы, что было ошибкой. Из-за этого он не смог опровергнуть одного из критиков своей эволюционной теории, который писал следующее.

Если у единичного животного появляется какой-либо признак, то при передаче следующему поколения от него останется ½, еще следующему ¼ и т. д. В конечном итоге признак исчезнет.

Дарвин не смог возразить, так как не знал, что признаки организма дискретны, они не смешиваются и не растворяются.

Г. Мендель провел длительные, систематические, статистические исследования наследования признаков. В качестве объекта исследования был выбран горох. Это был очень удачный выбор. Такие признаки как цвет семян и цветков, морщинистость семян и ряд других находятся в разных хромосомах (т. е.

наследуются не сцеплено), и у них чаще всего нет промежуточного проявления признака (например, семя может быть либо желтым, либо зеленым, но не смешанного цвета). Мендель конечно же тогда ничего не знал о сцепленном наследовании, влиянии генов и аллелей друг на друга и др.

Если бы в исследуемых признаках гороха все это наблюдалось, то его эксперимент бы мог не удасться.

Грегор Мендель и открытые им законы наследственности – 1860-е годы

Мендель доказал дискретность наследственных признаков. Они не разбавляются, а существует лишь подавление одного другим.

Менделем был разработан гибридологический метод исследования.

Но самое главное Мендель впервые в истории генетики сформулировал три ее закона: единообразия гибридов первого поколения, расщепления во втором поколении, независимого наследования.

Совет

Однако в те времена история генетики еще не началась. Мендель был монахом-самоучкой, и его исследованиям большого значения не придали. Лишь в начале XX века, когда многие ученые экспериментально на разных растениях и животных подтвердили справедливость законов Менделя, его работы получили заслуженную оценку.

Начало XX века было бурным этапом в развитии генетики. В это время появляется сам термин «генетика». Дается определение «гена», «генотипа» и «фенотипа».

Обнаруживается явление сцепления (совместного наследования) генов, У. Бэтсоном открывается закон чистоты гамет и др. В 1910 году Т.

Морган совместно с другими учеными разрабатывает хромосомную теорию, которая во многом обобщает и объясняет все ранее сделанные открытия в истории генетики.

Томас Морган изучал хромосомы, открыл кроссинговер – 1910-е годы

В последующие годы генетика и эволюционное учение связываются между собой. Второе находит объяснение с точки зрения законов первой.

Ученые знали, что хромосомы участвуют в передаче наследственной информации, но не знали, какое вещество ответственно за это. В 40-х годах стало понятно, что ДНК является носителем наследственности. Так ряд ученых переносили ДНК одних бактерий в другие и наблюдали у вторых появление признаков первых.

С развитием методов химии и физики стало возможно исследовать структуру ДНК, что было сделано Криком и Уотсоном в 1953 году. Оказалось, что молекула ДНК состоит из двух полинуклеотидных цепей, закрученных в спираль. Каждая из цепей ДНК является матрицей для синтеза комплементарной ей новой цепи, и удвоение ДНК обеспечивает наследственность.

Фрэнсис Крик и Джеймс Уотсон открыли структуру ДНК – 1950-е годы

Ученые поняли, что последовательность нуклеотидов в гене определяет структуру белковой молекулы. Каждая аминокислота белка кодируется тремя последовательными нуклеотидами ДНК.

В истории генетики 70-е годы XX века ознаменовались появлением генной инженерии. Ученые стали вмешиваться в геномы живых организмов и изменять их. Стали изучаться молекулярные основы различных физиологических процессов.

В последнее десятилетие XX века были секвенированы (расшифрованы) геномы многих простых организмов. В начала XXI века (2003 г.) был завершен проект по расшифровке (определению последовательности нуклеотидов в хромосомах) генома человека.

Логотип проекта “Геном человека”

На сегодняшний день существуют базы данных геномов многих организмов. Наличие такой базы данных человека имеет большое значение в предупреждении и исследовании многих заболеваний.

Источник: https://scienceland.info/biology10/genetics-history

Ссылка на основную публикацию