Измерение скорости света: первые методы и опыты. как измеряли свет ученые раньше и сейчас?

История скорости света

Previous Entry | Next Entry

ru_deep_spaceВпервые скорость света определил в 1676 Оле Рёмер по изменению промежутков времени между затмениями спутника Юпитера Ио.

С явлением света мы впервые знакомимся ещё в 9 классе. В 11-м начинаем рассматривать интереснейший материал о том, что такое скорость света.

Оказывается, история открытия этого явления не менее интересна, чем само явление.Нужды торговли, которая развивалась быстрыми темпами, и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы.

Оле Ремер – молодой датский астроном – был приглашен работать в новую парижскую обсерваторию.Ученые предложили использовать для определения парижского времени и времени на борту корабля небесное явление, наблюдаемое ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы узнать парижское время.

Обратите внимание

Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году.Спутник Ио проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками составил 42 часа 28 минут.

Такие же измерения, проведенные полгода спустя, показали, что спутник опоздал, появившись из тени на 22 минуты позже по сравнению с моментом времени, который можно было рассчитать на основании знания периода обращения Ио. Скорость имеет неточный результат из-за неверного определения времени запаздывания.

В 1849 году французский физик Арман Ипполит Луи Физо поставил лабораторный опыт по измерению скорости света. Параметры установки Физо таковы. Источник света и зеркало располагались в доме отца Физо близ Парижа, а зеркало 2 — на Монмартре. Расстояние между зеркалами составляло 8,66 км, колесо имело 720 зубцов.

Оно вращалось под действием часового механизма, приводимого в движение опускающимся грузом. Используя счетчик оборотов и хронометр, Физо обнаружил, что первое затемнение наблюдается при скорости вращения колеса 12,6 об/с.Свет от источника проходил через зубья вращающегося колеса и, отразившись от зеркала, возвращался опять к зубчатому колесу.

Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Используя метод вращающегося затвора, Физо получил значение скорости света: 3,14.105 км/с.Весной 1879 года газета “Нью-Йорк Таймс” сообщила: “На научном горизонте Америки появилась новая яркая звезда.

Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт Майкельсон, которому еще нет и 27 лет, добился выдающегося успеха в области оптики: он измерил скорость света!” Примечателен тот факт, что на выпускных экзаменах в академии Альберту достался вопрос об измерении скорости света.

Кто мог предположить, что через короткое время Майкельсон сам войдет в историю физики, как измеритель скорости света.До Майкельсона только единицам (все они были французами) удалось измерить ее с помощью земных средств. А на американском континенте до него никто даже не пытался поставить этот трудный эксперимент.

Установка Майкельсона размещалась на двух горных вершинах, разделенных расстоянием 35,4 км. Зеркалом служила восьмигранная стальная призма на горе Сан Антонио в Калифорнии, сама установка находилась на горе Маунт-Вильсон. После отражения от призмы луч света попадал на систему зеркал, возвращающих его назад.

Для того чтобы луч попадал в глаз наблюдателя, вращающаяся призма должна за время распространения света туда и обратно, успеть повернуться хотя бы на 1/8 оборота.

Майкельсон писал: “То, что скорость света – является категорией, недоступной человеческому воображению, и что с другой стороны ее возможно измерить с необыкновенной точностью, делает ее определение одной из самых увлекательных проблем, с которыми может столкнуться исследователь.Наиболее точное измерение скорости света было получено в 1972 году американским ученым К.

Важно

Ивенсоном с сотрудниками. В результате независимых измерений частоты и длины волны лазерного измерения ими было получено значение 299792456,2±0,2м/с.Однако в 1983 г. на заседании Генеральной ассамблеи мер и весов было принято новое определение метра (это длина пути, проходимое светом в вакууме за 1/299792458 долю секунды), из которого следует что скорость света в вакууме абсолютно точно равна с=299 792 458 м/с.1676 г. – Оле Ремер – астрономический методс= 2,22•108 м/с1849г. – Луи Физо – лабораторный методс= 3,12•108 м/с1879 г. Альберт Майкельсон – лабораторный методC= 3,001•108м/с1983 г. Заседание Генеральной ассамблеи мер и весовс=299792458 м/сКОММЕНТАРИЙ ЭКСПЕРТА

Преподаватель физики и астрономии Елена Львовна Ильина:

– Свет в том смысле, в котором мы привыкли употреблять это слово, это лишь узенькая полосочка на шкале электромагнитных волн. Что касается скорости света, то удивительно, что на самом деле это такая значительная величина – ни одно тело не может двигаться с этой скоростью. Детский ум будоражит мысль, что свет от далёкой звезды свет может идти миллионы лет. А в астрономии есть такая величина, как световой год.

vmdaily.ru

Все самое интересное о космосе здесь – ru_deep_space

Источник: https://ru-deep-space.livejournal.com/52039.html

Интересная физика: как измеряли скорость света

Оказывается, история открытия этого явления не менее интересна, чем само явление.

Впервые скорость света определил в 1676 Оле Рёмер по изменению промежутков времени между затмениями спутника Юпитера Ио.

Нужды торговли, которая развивалась быстрыми темпами, и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы. Оле Ремер – молодой датский астроном – был приглашен работать в новую парижскую обсерваторию.

Ученые предложили использовать для определения парижского времени и времени на борту корабля небесное явление, наблюдаемое ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы узнать парижское время.

Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году. Спутник Ио проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения.

Затем он опять появлялся как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками составил 42 часа 28 минут.

Такие же измерения, проведенные полгода спустя, показали, что спутник опоздал, появившись из тени на 22 минуты позже по сравнению с моментом времени, который можно было рассчитать на основании знания периода обращения Ио. Скорость имеет неточный результат из-за неверного определения времени запаздывания.

В 1849 году французский физик Арман Ипполит Луи Физо поставил лабораторный опыт по измерению скорости света. Параметры установки Физо таковы. Источник света и зеркало располагались в доме отца Физо близ Парижа, а зеркало 2 — на Монмартре.

Расстояние между зеркалами составляло 8,66 км, колесо имело 720 зубцов. Оно вращалось под действием часового механизма, приводимого в движение опускающимся грузом.

Совет

Используя счетчик оборотов и хронометр, Физо обнаружил, что первое затемнение наблюдается при скорости вращения колеса 12,6 об/с.

Свет от источника проходил через зубья вращающегося колеса и, отразившись от зеркала, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Используя метод вращающегося затвора, Физо получил значение скорости света: 3,14.105 км/с.

Весной 1879 года газета “Нью-Йорк Таймс” сообщила: “На научном горизонте Америки появилась новая яркая звезда.

Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт Майкельсон, которому еще нет и 27 лет, добился выдающегося успеха в области оптики: он измерил скорость света!” Примечателен тот факт, что на выпускных экзаменах в академии Альберту достался вопрос об измерении скорости света. Кто мог предположить, что через короткое время Майкельсон сам войдет в историю физики, как измеритель скорости света.

До Майкельсона только единицам (все они были французами) удалось измерить ее с помощью земных средств. А на американском континенте до него никто даже не пытался поставить этот трудный эксперимент.

Установка Майкельсона размещалась на двух горных вершинах, разделенных расстоянием 35,4 км. Зеркалом служила восьмигранная стальная призма на горе Сан Антонио в Калифорнии, сама установка находилась на горе Маунт-Вильсон.

После отражения от призмы луч света попадал на систему зеркал, возвращающих его назад.

Для того чтобы луч попадал в глаз наблюдателя, вращающаяся призма должна за время распространения света туда и обратно, успеть повернуться хотя бы на 1/8 оборота.

Майкельсон писал: “То, что скорость света – является категорией, недоступной человеческому воображению, и что с другой стороны ее возможно измерить с необыкновенной точностью, делает ее определение одной из самых увлекательных проблем, с которыми может столкнуться исследователь.

Обратите внимание

Наиболее точное измерение скорости света было получено в 1972 году американским ученым К. Ивенсоном с сотрудниками. В результате независимых измерений частоты и длины волны лазерного измерения ими было получено значение 299792456,2±0,2м/с

Однако в 1983 г. на заседании Генеральной ассамблеи мер и весов было принято новое определение метра (это длина пути, проходимое светом в вакууме за 1/299792458 долю секунды), из которого следует что скорость света в вакууме абсолютно точно равна с=299 792 458 м/с

1676 г. – Оле Ремер – астрономический метод

с= 2,22•108 м/с

1849г. – Луи Физо – лабораторный метод

с= 3,12•108 м/с

1879 г. Альберт Майкельсон – лабораторный метод

C= 3,001•108м/с

1983 г. Заседание Генеральной ассамблеи мер и весов

с=299792458 м/с

КОММЕНТАРИЙ ЭКСПЕРТА

Преподаватель физики и астрономии Елена Львовна Ильина:

– Свет в том смысле, в котором мы привыкли употреблять это слово, это лишь узенькая полосочка на шкале электромагнитных волн.

Что касается скорости света, то удивительно, что на самом деле это такая значительная величина – ни одно тело не может двигаться с этой скоростью.

Детский ум будоражит мысль, что свет от далёкой звезды свет может идти миллионы лет. А в астрономии есть такая величина, как световой год.

Источник: https://vm.ru/news/187737.html

Cкорость света

ПодробностиКатегория: ФотометрияОпубликовано 12.01.2015 15:54Просмотров: 5326

Скоростью света называют расстояние, которое свет проходит за единицу времени. Эта величина зависит от того, в каком веществе распространяется свет.

В вакууме скорость света равна 299 792 458 м/с. Это наивысшая скорость, которая может быть достигнута. При решении задач, не требующих особой точности, эту величину принимают равной 300 000 000 м/с.

Предполагается, что со скоростью света в вакууме распространяются все виды электромагнитного излучения: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение.

Обозначают её буквой с.

Как определили скорость света

В античные времена учёные считали, что скорость света бесконечна. Позднее в учёной среде начались дискуссии по этому вопросу. Кеплер, Декарт и Ферма были согласны с мнением античных учёных. А Галилей и Гук полагали, что, хотя скорость света очень велика, всё-таки она имеет конечное значение.

Галилео Галилей

Одним из первых скорость света попытался измерить итальянский учёный Галилео Галилей. Во время эксперимента он и его помощник находились на разных холмах. Галилей открывал заслонку на своём фонаре. В тот момент, когда помощник видел этот свет, он должен был проделать те же действия со своим фонарём.

Время, за которое свет проходил путь от Галилея до помощника и обратно, оказалось таким коротким, что Галилей понял, что скорость света очень велика, и на таком коротком расстоянии измерить её невозможно, так как свет распространяется практически мгновенно.

А зафиксированное им время показывает всего лишь быстроту реакции человека.

Впервые скорость света удалось определить в 1676 г. датскому астроному Олафу Рёмеру с помощью астрономических расстояний. Наблюдая с помощью телескопа затмения спутника Юпитера Ио, он обнаружил, что по мере удаления Земли от Юпитера каждое последующее затмение наступает позже, чем было рассчитано.

Максимальное запаздывание, когда Земля переходит на другую сторону от Солнца и удаляется от Юпитера на расстояние, равное диаметру земной орбиты, составляет 22 часа.

Хотя в то время точный диаметр Земли не был известен, учёный разделил его приблизительную величину на 22 часа и получил значение около 220 000 км/с.

Олаф Рёмер

Результат, полученный Рёмером, вызвал недоверие у учёных. Но в 1849 г. французский физик Арман Ипполит Луи Физо измерил скорость света методом вращающегося затвора.

В его опыте свет от источника проходил между зубьями вращающегося колеса и направлялся на зеркало. Отражённый от него, он возвращался назад. Скорость вращения колеса увеличивалась.

Важно

Когда она достигала какого-то определённого значения, отражённый от зеркала луч задерживался переместившимся зубцом, и наблюдатель в этот момент ничего не видел.

Опыт Физо

Физо вычислил скорость света следующим образом. Свет проходит путь L от колеса до зеркала за время, равное t1 = 2L/c.

Время, за которое колесо делает поворот на ½ прорези, равно t2 = T/2N, где Т – период вращения колеса, N – количество зубцов. Частота вращения v = 1/T.

Момент, когда наблюдатель не видит света, наступает при t1 = t2. Отсюда получаем формулу для определения скорости света:

с = 4LNv

Проведя вычисления по этой формуле, Физо определил, что с = 313 000 000 м/с. Этот результат был гораздо точнее.

Арман Ипполит Луи Физо

В 1838 г. французский физик и астроном Доминик Франсуа Жан Араго́ предложил использовать для вычисления скорости света метод вращающихся зеркал. Эту идею осуществил на практике французский физик, механик и астроном Жан Берна́р Лео́н Фуко́, получивший в 1862 г. значение скорости света  (298 000 000±500 000) м/с.

Доминик Франсуа Жан Араго

В 1891 г. результат американского астронома Са́ймона Нью́кома оказался на порядок точнее результата Фуко. В результате его вычислений с = (99 810 000±50 000) м/с.

Совет

Исследования американского физика Альберта Абрахама Майкельсона, использовавшего установку с вращающимся восьмигранным зеркалом, позволили ещё точнее определить скорость света. В 1926 г. учёный измерил время, за которое свет проходил расстояние между вершинами двух гор, равное 35,4 км, и получил с =  (299 796 000±4 000) м/с.

Наиболее точное измерение было проведено в 1975 г. В этом же году Генеральная конференция по мерам и весам рекомендовала считать скорость света, равной 299 792 458 ± 1,2 м/с.

Читайте также:  Как выбрать тему дипломной работы? выбираем тему диплома в универе, колледже

От чего зависит скорость света

Скорость света в вакууме не зависит ни от системы отсчёта, ни от положения наблюдателя. Она остаётся постоянной величиной, равной 299 792 458 ± 1,2 м/с.

Но в различных прозрачных средах эта скорость будет ниже его скорости в вакууме. Любая прозрачная среда имеет оптическую плотность. И чем она выше, тем с меньшей скоростью распространяется в ней свет.

Так, например, скорость света в воздухе выше его скорости в воде, а в чистом оптическом стекле меньше, чем в воде.

Если свет переходит из менее плотной среды в более плотную, его скорость уменьшается. А если переход происходит из более плотной среды в менее плотную, то скорость, наоборот, увеличивается. Этим объясняется, почему световой луч отклоняется на границе перехода двух сред.

Источник: http://ency.info/materiya-i-dvigenie/fotometriya/378-skorost-sveta

Измерим скорость света?

Метод, с помощью которого Леверье предсказал существование Нептуна, покорил воображение ученых. За движением Нептуна стали тщательно следить и вскоре обнаружили столь значительные различия между наблюдаемой и теоретической орбитами нового светила, что это могло быть объяснено только существованием еще одной планеты, расположенной за Нептуном!

18 февраля 1930 года молодой астроном Клайд Томбо из Ловелловской обсерватории в Америке наконец обнаружил (на расстоянии, почти в три раза превышающем радиус орбиты Нептуна) новую планету Солнечной системы, получившую название Плутон. Томбо тем самым подтвердил расчеты известных астрономов-теоретиков ПерсиваляЛовелла и Вильяма Пикеринга.

Поистине, как сказал знаменитый французский оптик и астроном Франсуа Араго, «…умственные глаза могут заменять сильные телескопы…».

Больших планет Солнечной системы стало девять: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером расположено большое число маленьких планет, получивших название астероидов. Однако астрономы продолжают искать новые планеты.

Теоретические прогнозы показали, что пока на перемещения небесных тел в Солнечной системе не влияет притяжение далеких звезд и других планетарных систем нашей галактики. Солнце должно «привлекать» к себе малые и большие планеты. Сила тяготения Солнца распространяется на расстояние в 200 тысяч раз большее, чем путь от Земли до Солнца!

Не может быть, чтобы в таком огромном пространстве не было плотных небесных тел, хотя пока поиски десятой планеты Солнечной системы с помощью самых мощных современных телескопов не увенчались успехом…

Обратите внимание

Как мы видим, небесная механика неизменно подтверждает законы земной механики, выведенные Ньютоном. Движение небесных тел, как выяснилось еще во времена Ньютона, позволяет не только проверить закон всемирного тяготения, но и дает в руки исследователей прекрасный способ определения скорости света.

Странно, что о таком способе не догадался Галилей, предлагавший для этой цели лишь опыт с фонарями. Два человека стоят на большом удалении друг от друга с фонарями в руках и отмечают время, за которое свет внезапно зажженного фонаря преодолеет расстояние между ними. Опыт, к сожалению, совершенно неосуществимый из-за слишком большой скорости света…

Как измерили скорость света?

В сентябре 1676 года молодой датчанин Олаф Рёмер, работавший в Парижской обсерватории, представил Французской Академии наук доклад, в котором описал, как, пользуясь вращением Земли вокруг Солнца, можно определить скорость света.

Рёмер при своих исследованиях наблюдал перемещение одного из спутников Юпитера. Время полного оборота спутника вокруг планеты было строго постоянным и хорошо известным астрономам.

Рёмер заметил: если Земля при своем вращении вокруг Солнца находится в наиболее удаленной от Юпитера точке орбиты, то вхождение спутника в тень Юпитера астрономы наблюдают на 22 минуты позже, чем в тот момент, когда Земля находится к Юпитеру ближе всего.

Рёмер догадался о причине странного явления — свету нужно 22 минуты, чтобы преодолеть расстояние от ближайшей до наиболее далекой от Юпитера точки орбиты Земли. Зная время, которое тратит на это свет, и вычислив диаметр орбиты Земли, мы легко можем определить скорость света!

Вероятно, это был один из первых в истории науки случаев, когда ученый пользовался Вселенной как гигантской естественной лабораторией…

Рёмер получил значения скорости света, которые раза в полтора меньше современных значений этой величины. Но за это вряд ли можно его упрекнуть: мы же знаем, какими приборами измерял время его великий современник Галилео Галилей.

Астрономический способ измерения скорости света широко использовался физиками в течение трех веков, прошедших после наблюдений и расчетов Рёмера. Сейчас общепринятым считается значение скорости света в вакууме, равное 299,79 тысячи километров в секунду.

Важно

В XIX веке научились определять скорость света на Земле. Высокого совершенства достиг в этих экспериментах американский физик Альберт Майкельсон. Его сложный массивный прибор со множеством зеркал, удлинявших путь света, был размещен на каменной плите площадью 1,5 м2 и толщиной 30 см. Чтобы избежать малейших возможных сотрясений прибора, подставка для плиты была заполнена ртутью.

Майкельсон установил, что скорость света не зависит от направления луча, на распространение света не влияет вращение Земли.

Исключительная тщательность опытов Майкельсона, достигнутая в начале XIX века высокая точность в определении истинного значения скорости света, быть может, натолкнула Альберта Эйнштейна на мысль считать скорость света в вакууме самой высокой скоростью, которая возможна в Природе.

Эта мысль составляет один из важнейших постулатов созданной Эйнштейном теории относительности — наиболее общей современной теории движения, в которую законы Ньютона вошли как частный случай.

Источник: Марк Колтун “Мир физики“

Источник: http://www.ThingsHistory.com/izmerim-skorost-sveta/

В наше время скорость света измеряет «простым» прибором – осциллографом. а как ее измеряли раньше?

optiklassВ 80-х годах 19 века молодой лейтенант ВС США Альберт Майкельсон проводил свои наблюдения в дощатом строении длиной около 13 м и высотой около 2 м, которое находилось за оградой Национальной Академии, со стороны моря. Там помещались вращающееся зеркало, двигатель, дуговая лампа и прочее оборудование.

В 600 м от этого строения Майкельсон построил кирпичное здание, где находился кирпичный постамент, на котором устанавливалось второе зеркало, отражавшее ход светового луча.

Ходить из одного здания в другое приходилось напрямик, по полю, и это путешествие было не таким уж простым, когда выпадал снег или стояла дождливая погода. Но это не останавливало исследователя…

Первым рассчитал скорость света датчанин Ремер в XVII веке.

Он заметил, что тень одной из лун Юпитера периодически появлялась на поверхности планеты на 16 минут 36 секунд раньше, чем при наблюдении в другое время года.

Ремер решил, что причиной разницы во времени является то обстоятельство, что один раз в году Земля находится на кратчайшем расстоянии от Юпитера, а через шесть месяцев – в максимальном удалении. Ремер полагал, что разница в несколько минут равна времени, в течение которого свет пересекает земную орбиту. Разделив это расстояние на 16 минут 36 секунд, он получил 186 тысяч миль в секунду.

Через 173 года французский ученый Физо в 1849 году первым поставил эксперимент по измерению скорости света, проходящего между двумя точками на поверхности Земли.

В то время шла борьба между сторонниками волновой и корпускулярной теорией распространения света.

Из волновой теории следовало, что скорость света в воде меньше, чем скорость света в воздухе, из корпускулярной же теории Ньютона – наоборот.

Совет

В 60-е и 70-е годы XIX века выяснение этого противоречия стало наиболее актуальным исследованием в физике. Нужно было найти способ точного измерения скорости света в любой среде.

Введя на пути света трубу с водой Жан Бернард Леон Фуко в 1853 году определил, что скорость света в воде в 4/3 раза меньше, чем в воздухе. Фуко получил значение скорости света в воздухе равной 298000 км/с.

Задача точного измерения скорости света пленила Майкельсона. Он говорил: «Тот факт, что скорость света непостижима для человеческого представления и, с другой стороны, существование принципиальной возможности ее измерения с чрезвычайной точностью, делают эту задачу одной из самых увлекательных проблем, когда-либо стоявших перед исследователем».

Ученый остался верен своему увлечению на протяжении всей жизни. Он поставил почти 3 тысячи опытов, точность которых была непревзойденной.

Если первый прибор молодого лейтенанта Майкельсона для измерения скорости света в 1878 году стоил 10 долларов, то последняя созданная им система для измерения скорости света в вакууме в 1928 обошлась в 50 тысяч долларов. Это был самый грандиозный проект Майкельсона

Научная статья, написанная Майкельсоном перед смертью в 1931 году, называлась точно так же, как и его первая работа, напечатанная в 1878 году в Аннаполисе «О методе измерения скорости света»Сотрудники Береговой геодезической службы Соединенных Штатов разметили и вымерили расстояние для громадного прибора на ранчо Эрвин.Посредством многократного отражения свет должен был проходить расстояние в 8 миль, вымеренное с точностью до одной миллионной. Во всей системе создавалось разрежение, равное одной полуторатысячной части земной атмосферы.Вакуум предполагалось создать в трубе из гофрированного стального проката длиной почти в милю. Труба имела 3 фута в диаметре и доставлялась на место опыта 60-футовыми секциями.Выкачивание воздуха продолжалось 48 часов.Все время то одна, то другая часть выходила из строя, вакуум нарушался, и приходилось начинать снова.

Скорость света в вакууме оказалась равной в среднем 299774 километрам в секунду.

В 1907 году Майкельсон стал лауреатом Нобелевской премии по физике «за создание точных оптических инструментов и спектроскопических и метрологических исследований, выполненных с их помощью».

А начало этого поста породил другой, «второстепенный» прибор Альберта Майкельсона  – гармонический анализатор.

Он поразил мое воображение. Прибор выполнял преобразование Фурье. Эта функция сегодня широко используется в информатике, обработке сигналов, физике, теории чисел, комбинаторике, теории вероятностей, криптографии и других областях. Прообраз современных электронных систем.

Источник: https://optiklass.livejournal.com/30654.html

IT News

ДатаКатегория: Физика

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала.

Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу.

Обратите внимание

Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду.

Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду.

Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно.

Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало.

Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча.

Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше.

В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду).

Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды.

Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

Источник: http://Information-Technology.ru/sci-pop-articles/23-physics/256-kak-izmeryayut-skorost-sveta

Как измеряли скорость света и каково ее реальное значение

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.

Читайте также:  С днем студента, дорогие клиенты!

Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца.

Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты.

Важно

В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем.

На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало.

Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения.

К началу 70-х погрешность в измерениях снизилась до 1 км/сек.

В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Совет

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

Источник: https://www.techcult.ru/science/5102-kakova-realnaya-skorost-sveta-i-mozhno-li-ee-preodolet

Как измерили скорость света

Первое успешное измерение скорости света в вакууме выполнил в 1676 году. Он рассчитал скорость света по движению спутников Юпитера. Современное значение c = 299792458 м/с .

How is the speed of light measured?
Philip Gibbs

Скорость света c в вакууме не измерена. Она имеет точную фиксированную величину в стандартных единицах. По международному соглашению 1983 года метр определяется как длина пути, проходимая светом в вакууме за время 1/299792458 секунды. Скорость света в точности равна 299792458 м/с. Дюйм определён, как 2.54 сантиметра.

Поэтому в неметрических единицах скорость света тоже имеет точное значение. Такое определение имеет смысл только потому, что скорость света в вакууме константа, а этот факт должен быть подтверждён экспериментально (см. Постоянна ли скорость света? ).

Также экспериментально нужно определять скорость света в средах, таких как вода и воздух.

До семнадцатого века считалось, что свет распространяется мгновенно. Это подтверждали наблюдения лунного затмения. При конечной скорости света должна быть задержка между положением Земли относительно Луны и положением земной тени на поверхности Луны, но такой задержки не обнаружено.

Сейчас мы знаем, что скорость света слишком велика, чтобы заметить задержку. Галилей сомневался в бесконечности скорости света. Он предложил способ её измерения путём закрывания и открывания фонаря расположенного на расстоянии в несколько миль.

Неизвестно, пытался ли он провести такой эксперимент, но из-за очень большой скорости света измерение не могло быть удачным.

Обратите внимание

Первое успешное измерение величины c выполнил в 1676 году. Он заметил, что время между затмениями спутников Юпитера меньше, когда расстояние от Земли до Юпитера уменьшается, и больше, когда это расстояние увеличивается.

Он понял, что это получается из-за изменения времени, которое нужно свету, чтобы пройти от Юпитера до Земли при изменении расстояния между ними. Он рассчитал, что скорость света равна 214000 км/с.

Неточность объясняется тем, что расстояния между планетами в то время не были ещё хорошо определены.

В 1728 году оценил величину скорости света, наблюдая аберрацию звёзд (изменение видимого положения звезды, вызванное движением Земли вокруг Солнца). Он наблюдал одну из звезд в созвездии Дракона, и обнаружил, что её видимое положение изменяется в течение года. Этот эффект работает для всех звёзд, в отличие от параллакса, который заметнее для ближних звёзд.

Аберрация аналогична влиянию движения на угол падения капель дождя. Если вы стоите, и нет ветра, то капли падают вертикально вам на голову. Если вы побежите, то окажется, что дождь идёт под углом и попадает вам в лицо. Брэдли измерил этот угол для света звёзд. Зная скорость движения Земли вокруг Солнца, он определил, что скорость света равна 301000 км/с.

Первое измерение c на Земле выполнил в 1849 году. Он использовал отражение света от зеркала, удалённого на расстояние 8 км. Луч света проходил через зазор между зубчиками быстро вращающегося колеса.

Скорость вращения увеличивали, пока отражённый луч не становился виден в следующем зазоре. Рассчитанная величина c получилась равной 315000 км/с. Через год улучшил этот метод, используя вращающееся зеркало, и получил гораздо более точное значение 298000 км/с.

Улучшенный метод был достаточно точен, и с его помощью определили, что скорость света в воде меньше, чем в воздухе.

Важно

После того, как опубликовал свою теорию электромагнетизма, стало возможно определять скорость света косвенно по значениям магнитной и электрической проницаемости. Первыми это сделали в 1857 году. В 1907 году таким же способом получили 299788 км/с. В то время это было самое точное значение.

В дальнейшем дополнительные меры применялись для повышения точности. Например, учитывали коэффициент преломления света в воздухе. В 1958 получил значение 299792.5 км/с, используя микроволновый интерферометр и электрооптический затвор Керра.

После 1970 года с использованием лазера с высокой стабильностью спектра и точных цезиевых часов стали возможны ещё более точные измерения. До этого времени точность эталона метра была выше, чем точность измерения скорости света. И вот скорость света стала известна с точностью плюс-минус 1 м/с.

Теперь стало более практично в определении метра использовать скорость света. Эталон расстояния в 1 метр сейчас определяется с использованием атомных часов и лазера.

В таблице представлены основные этапы измерения скорости света :

ДатаАвторыМетодкм/сПогрешность
1676 Olaus Roemer Спутники Юпитера 214 000
1726 James Bradley Аберрация звёзд 301 000
1849 Armand Fizeau Зубчатое колесо 315 000
1862 Leon Foucault Вращающееся зеркало 298 000 ± 500
1879 Albert Michelson Вращающееся зеркало 299 910 ± 50
1907 Rosa, Dorsay ЭМ константы 299 788 ± 30
1926 Albert Michelson Вращающееся зеркало 299 796 ± 4
1947 Essen, Gorden-Smith Объёмный резонатор 299 792 ± 3
1958 K.D.Froome Радио интерферометр 299 792.5 ± 0.1
1973 Evanson et al Лазерный интерферометр 299 792.4574 ± 0.001
1983 Принятое значение 299 792.458

Philip Gibbs , 1997

Перевод Е.Корниенко

Источник: http://cyber-ek.ru/science/measure_c.html

Когда впервые измерили скорость света?

Известно, что скорость света в вакууме конечна и составляет ≈300 000 км/c. На этих данных основана вся современная физика и все современные космические теории. Но ещё совсем недавно ученые были уверены, что скорость света бесконечна, и мы мгновенно видим то, что происходит в самых дальних уголках космоса.

О том, что такое свет, люди начали задумываться ещё в глубокой древности.

Свет от пламени свечи, мгновенно распространяющийся по помещению, вспышки молний на небесах, наблюдение за кометами и другими космическими телами на ночном небе давало ощущение, что скорость света бесконечна.

Действительно, трудно поверить, что, например, смотря на Солнце, мы наблюдаем его не в настоящем состоянии, а таким, какое оно было около 8 минут назад.

Но некоторые люди всё же подвергали сомнению устоявшуюся, казалось бы, истину о бесконечности скорости света. Одним из таких людей был Исаак Бенгман, который в 1629 году попробовал провести эксперимент по определению конечной скорости света. В его распоряжении не было, конечно же, ни компьютеров, ни высокочувствительных лазеров, ни высокоточных часов.

Вместо этого ученый решил произвести взрыв. Наполнив емкость взрывчатым веществом, он на различном расстоянии от неё установил большие зеркала и попросил наблюдателей определить, в каком из зеркал вспышка от взрыва появится раньше. Учитывая, что за одну секунду свет способен обогнуть землю 7,5 раз, можно догадаться, что эксперимент закончился провалом.

Чуть позже небезызвестный Галилей, который тоже подвергал сомнению бесконечность скорости света, предложил свой эксперимент. Он поставил своего помощника с фонарем на один холм, а сам встал с фонарем на другой.

Когда Галилей поднял крышку со своего фонаря, его помощник сразу же поднял крышку с противоположного фонаря. Конечно, этот эксперимент тоже не мог увенчаться успехом.

Единственное, что Галилей мог предположить, было то, что скорость света намного быстрее человеческой реакции.

Совет

Получается, единственным выходом из положения было участие в эксперименте тел, достаточно сильно удаленных от Земли, но которые можно было бы наблюдать при помощи телескопов того времени. Такими объектами стали Юпитер и его спутники. В 1676 году астроном Оле Рёмер пытался определить долготу между различными точками на географической карте.

Для этого он использовал систему по наблюдению за затмением одного из спутников Юпитера – Ио. Свои исследования Оле Рёмер вел с острова недалеко от Копенгагена, в то время как другой астроном Джованни Доменико Кассини наблюдал за этим же затмением из Парижа. Сравнив время начала затмения между Парижем и Копенгагеном, ученые определили разницу в долготе.

Несколько лет подряд Кассини наблюдал за спутниками Юпитера из одного и того же места на Земле и заметил, что время между затмениями спутников становится короче, когда Земля находится к Юпитеру ближе, и длиннее, когда Земля отдалена от Юпитера. На основании своих наблюдений он предположил, что скорость света конечна.

Это было абсолютно верное решение, но почему-то Кассани вскоре отказался от своих слов. Зато Рёмер воспринял идею с энтузиазмом,  и даже сумел составить хитроумные формулы, учитывающие диаметр Земли и орбиту Юпитера. В результате он посчитал, что свету требуется около 22 минут, чтобы пересечь диаметр орбиты Земли вокруг Солнца.

Его расчеты были неверны: по современным данным, свет проходит это расстояние за 16 минут и 40 секунд. Если бы вычисления Оле были бы точными, то скорость света составляла бы 135 000 км/c.

Позже, основываясь на вычислениях Рёнера, Христиан Гюйенс подставил в формулы более точные данные диаметра Земли и орбиты Юпитера. В итоге он получил скорость света равную 220 000 км/c, что намного ближе к верному значению.

Но не все ученые подсчитали гипотезу о конечности скорости света верной. Научные дебаты продолжались до 1729 года, когда было открыто явление световой абберации, которое подтвердило предположение о конечности скорости света и позволило более точно измерить её значение.

Источник: https://mydiscoveries.ru/kogda-vpervyie-izmerili-skorost-sveta

Экспериментальные методы определения скорости света

Первое экспериментальное подтверждение конечности величины скорости света было дано Рёмером в 1676 г. Он обнаружил, что движение Ио, крупнейшего спутника Юпитера, совершается не совсем регулярно по времени.

Было установлено, что нарушается периодичность затмений Ио Юпитером. За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин.

Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.).

Рис. 1. Затмение Ио Юпитером. На Земле затмение наблюдается с запаздыванием на время Δ t = L/c. Поскольку L'>L, то больше оказывается и величина запаздывания.

Скорость света, измеренная Рёмером была равна 2

c Рёмера = 214300 км/с . (4)  

Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Аберрация света звезд

В 1725 г. Джеймс Брэдли обнаружил, что звезда γ Дракона, находящаяся в зените (т.е. непосредственно над головой), совершает кажущееся движение с периодом в один год по почти круговой орбите с диаметром равным 40,5 дуговой секунды. Для звезд, видимых в других местах небесного свода, Брэдли также наблюдал подобное кажущееся движение — в общем случае эллиптическое.

Явление, наблюдавшееся Брэдли, называется аберрацией. Оно не имеет ничего общего с собственным движением звезды. Причина аберрации заключается в том, что величина скорости света конечна, а наблюдение ведется с Земли, движущейся по орбите с некоторой скоростью v.

Рис. 2. Аберрация света звезды.

Угол раствора конуса, под которым с Земли видна кажущаяся траектория звезды, определяется выражением

(5)

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c.

Методы измерения, основанные на применении зубчатых колес и вращающихся зеркал

Смотри Берклеевский Курс Физики (БКФ), Механика, стр. 337.

Метод объемного резонатора

Можно очень точно определить частоту, при которой в объемном резонаторе известных размеров укладывается определенное число длин полуволн электромагнитного излучения. Скорость света определяется из соотношения

Читайте также:  Беспорядок на рабочем месте - минусы и причины. чем плох беспорядок на столе?

где λ — длина волны, а ν — частота света (см. БКФ, механика, стр. 340).

Метод Шоран

Смотри БКФ, Механика, стр. 340.

Применение индикатора модулированного света

Смотри БКФ, Механика, стр. 342.

Методы, основанные на независимом определении длины волны и частоты лазерного излучения

В 1972 г. скорость света была определена на основе независимых измерений длины волны λ и частоты света ν. Источником света служил гелий-неоновый лазер (λ = 3.39 мкм). Полученное значение c = λν = 299792458± 1.2 м/с. (cм. Д.В.Сивухин, Оптика, стр. 631).

Независимость скорости света от движения источника или приемника

В 1887 г. знаменитый опыт Майкельсона и Морли окончательно установил, что скорость света не зависит от направления его распространения по отношению к Земле. Тем самым была основательно подорвана существовавшая тогда теория эфира (см. БКФ, Механика, стр. 353).

Баллистическая гипотеза

Отрицательный результат опытов Майкельсона и Морли могла бы объяснить так называемая баллистическая гипотеза, согласно которой скорость света в вакууме постоянна и равна c только относительно источника.

Если же источник света движется со скоростью v относительно какой-либо системы отсчета, то скорость света c' в этой системе отсчета векторно складывается из c и v, т.е.

c' = c + v (как это происходит со скоростью снаряда при стрельбе из движущегося орудия).

Опровергают эту гипотезу астрономические наблюдения за движением двойных звезд (Ситтер, голландский астроном, 1913 г.).

Рис. 3. Доказательство де Ситтера.

Действительно, допустим, что баллистическая гипотеза верна. Для простоты предположим, что компоненты двойной звезды вращаются вокруг их центра масс по круговым орбитам в той же плоскости, в которой расположена Земля. Проследим за движением одной из этих двух звезд.

Пусть скорость ее движения по круговой орбите равна v. В том положении звезды, когда она удаляется от Земли вдоль соединяющей их прямой, скорость света (относительно Земли) равна cv, а в положении, когда звезда приближается, равна c+v.

Если отсчитывать время от момента, когда звезда находилась в первом положении, то свет из этого положения дойдет до Земли в момент t1 = L/(cv), где L — расстояние до звезды.

Обратите внимание

А из второго положения свет дойдет в момент t2 = T/2+L/(c+v), где T — период обращения звезды

(7)  

При достаточно большом L, t2

Источник: https://zdamsam.ru/b17130.html

Измерение скорости света

Сохрани ссылку в одной из сетей:

Впервые скорость света была определена датским астрономом Ремером в 1676г. До этого времени среди ученых существовало два противоположных мнения. Одни полагали, что скорость света бесконечно велика. Другие же хотя и считали ее очень большой, тем не менее конечной. Ремер подтвердил второе мнение.

Он правильно связал нерегулярности во времени затмений спутников Юпитера со временем, которое необходимо свету для прохождения по диаметру орбиты Земли вокруг Солнца. Он впервые сделал вывод о конечной скорости распространения света и определил ее величину. По его подсчетам, скорость света получилась равной 300870 км/с в современных единицах.

(Данные взяты из книги: Г. Липсон. Великие эксперименты в физике.)

Фуко метод,

метод измерения скорости света, заключающийся в последовательном отражении пучка света от быстро вращающегося зеркала, затем от второго – неподвижного зеркала, расположенного на точно измеренном расстоянии, и затем вновь от первого зеркала, успевшего повернуться на некоторый малый угол. Скорость света определяют (при известных скорости вращения первого зеркала и расстоянии между двумя зеркалами) по изменению направления трижды отражённого светового луча. Используя этот метод, скорость света в воздухе впервые измерил Ж. Б. Л. Фуко в 1862

В 1878-82 и 1924-26 провёл измерения скорости света, долгое время остававшиеся непревзойдёнными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885-87) подтвердил с большой точностью независимость скорости света от скорости движения Земли

На том же принципе основано и действие Угловых отражателей оптического диапазона, который представляет собой небольшую трёхгранную призму из прозрачного стекла, грани которой (площадью ~см2) покрыты тонким слоем металла. Такой У. о. обладает высоким Sэф из-за большого отношения а/l. Для получения всенаправленного У. о.

используют систему нескольких призм. Оптические У. о. получили распространение после появления лазеров. Они используются в навигации, для измерения расстояний и скорости света в атмосфере, в экспериментах с Луной и др. Оптические У. о.

в виде цветного стекла со многими углублениями тетраэдрической формы применяются как средство сигнализации в автодорожном хозяйстве и в быту.

Знаменитый американский ученый Альберт Майкельсон почти всю жизнь посвятил измерению скорости света.

   Однажды ученый осматривал предполагаемый путь светового луча вдоль полотна железной дороги. Он хотел построить еще более совершенную установку для еще более точного метода измерения скорости света. До этого он уже работал над этой проблемой

несколько лет и добился самых точных для того времени значений. Поведением ученого заинтересовались газетные репортеры и, недоумевая, спросили, что он тут делает.  Майкельсон объяснил, что он измеряет скорость света.

—   А зачем? — последовал вопрос.

—   Потому   что   это дьявольски интересно,— ответил Майкельсон.

Важно

И никто не мог предполагать, что эксперименты Майкельсона станут фундаментом, на котором будет построено величественное здание теории относительности, дающей совершенно новое представление о физической картине мира.

Пятьдесят лет спустя Майкельсон все еще продолжал свои измерения скорости света.

Kaк – то раз великий Эйнштейн задал ему такой же вопрос,

— Потому что это дьявольски интересно! — спустя полвека ответил Майкельсон  и Эйнштейну.

Метод Физо

В 1849 г. А. Физо поставил лабораторный опыт по измерению скорости света (см рис.). Свет от источника 5 проходил через прерыватель К (зубья вращающегося колеса) и, отразившись от зеркала 3, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец.

Тогда свет перекроется зубцом и в окуляре станет темно. Это наступит при условии, что время прохождения света туда и обратно t=2L/c окажется равным времени поворота зубчатого колеса на половину прорези t2=T/(2N)=1/(2Nv). Здесь L- расстояние от зубчатого колеса до зеркала; Т—период вращения зубчатого-колеса; N—число зубцов; v=1/T—частота вращения.

Из равенства t1=t2 следует расчетная формула для определения скорости света данным методом:

c=4LNv

Используя метод вращающегося затвора, Физо в 1849 г. по- лучил значение скорости света с = 3,13-10**5 км/с, что было совсем неплохо по тем временам. В дальнейшем использование раз- личных затворов позволило существенно уточнить значение ско- рости света. Так, в 1950 г. получено значение скорости света (в вакууме), равное

с= (299 793,1 ±0,25) км/с.

Остроумное решение сложной задачи определения скорости света было найдено в 1676 г. датским астрономом Олафом Ремером.

Олаф Ремер, наблюдая движение спутников Юпитера, заметил, что во время затмения спутник выходит из области тени периодически запаздывая.

Ремер объяснил это тем, что к моменту очередного наблюдения Земля находится в иной точке своей орбиты, чем в предыдущий раз, и, следовательно, расстояние между ней и Юпитером иное.

Максимальная величина, на которую возрастает это расстояние, равняется диаметру земной орбиты. И именно тогда, когда Земля больше всего удалена от Юпитера, спутник выходит из тени с наибольшим запаздыванием.

Совет

Сопоставив эти данные, Ремер пришел к выводу, что свет от спутника проходит расстояние, равное диаметру земной орбиты – 299 106 тыс. км в 1320 сек. Такой вывод не только убеждает в том, что скорость распространения света не может быть мгновенной, но и позволяет определить величину скорости; для этого надо разделить величину диаметра орбиты Земли на время запаздывания спутника.

По вычислениям Ремера, скорость распространения света оказалась равной 215 тыс. км / сек.

Последующие, более совершенные методы наблюдения за временем запаздывания спутников Юпитера позволили уточнить эту величину. Скорость распространения света, по современным данным, равна 299 998,9 км / сек.

Для практических расчетов принимают скорость света в вакууме равной 300 тыс. км / сек.

Огромная величина скорости света ошеломила не только современников Ремера, но и послужила поводом для отрицания корпускулярной теории света.

Если свет представляет собой поток корпускул, то при такой скорости движения энергии их должна быть очень велика. Удары корпускул при падении на тела должны быть ощутимы, т. е. Свет должен оказывать давление !

Следующим после Ремера скорость света измерял Джеймс Брадлей.

Переезжая однажды через р.Темзу, Брадлей обратил внимание на то, что во время движения лодки ветер дул как будто по другому направлению, чем это было на самом деле. Это наблюдение, вероятно, и дало ему основание объяснить аналогичным явлением кажущееся движение неподвижных звезд, называемое а б е р р а ц и е й света.

Свет звезды достигает Земли подобно тому, как капли отвесно падающего дождя падают на окна движущегося вагона. Движение луча света и движение Земли складываются.

Обратите внимание

Следовательно, чтобы свет от звезды, расположенной перпендикулярно к плоскости движения Земли, попадал в телескоп, его необходимо наклонить на некоторый угол, который зависит не от расстояния до звезды, а только, от скорости света и скорости движения Земли (она была уже в то время известна – 30 км / сек).

Измерив угол, Брадлей нашел, что скорость света равна 308 тыс. км/сек. Измерения Брадлея, как и Ремера, не разрешали спорного вопроса о значении постоянной в законе преломления, так как Брадлей и Ремер определяли скорость сета не в какой-либо среде, а в космическом пространстве.

Идею нового метода измерения скорости света предложил Д. Араго. Осуществили ее двумя различными способами И.Физо и Л.Фуко.

Физо в 1849 г. тщательно измерил расстояние между двумя пунктами. В доном из них он поместил источник света, а в другом – зеркало, от которого свет должен отразиться и вновь вернуться к источнику.

Для того чтобы определить скорость распространения света, надо было очень точно измерить промежуток времени, который необходим свету для прохождения удвоенного пути от источника до зеркала.

Расстояние от источника, находящегося в предместье Парижа Сюрене, до зеркала, установленного на Монмартре, составляло 8633 м. Значит, удвоенное расстояние было 17 266 м. Время, в течении которого свет пройдет это расстояние, если воспользоваться результатами измерения скорости Ремера, будет не более шести стотысячных долей секунды.

Средств для измерения столь малых промежутков времени тогда не было.

Значит, эти измерения следовало исключить из опыта.

В Сюрене была установлена зрительная труба, направленная на Париж. Сбоку через другую трубку поступал свет от источника. От поверхности прозрачной стеклянной пластинки, расположенной в трубке под углом в 45 , свет частично отражался по направлению к Парижу.

В Париже на Монмартре была установлена другая зрительная труба, в которую попадал свет, отраженный прозрачной пластинкой.

Глядя в окуляр, можно было видеть источник света, расположенный за боковой трубкой. Окуляр трубы, установленной на Монмартре , был заменен зеркалом, благодаря чему свет возвращался в Сюрен.

Отраженный зеркалом на Монмартре свет, встречая на обратном пути внутри трубы прозрачную стеклянную пластинку, частично отражался от ее поверхности, а сект, прошедший через пластинку и окуляр трубы, попадал в глаз наблюдателя.

Такое устройство позволяло наблюдателю видеть в окуляре зрительной трубы свет от источника, который поступал через боковую трубку.

Зрительная труба в Сюрене, кроме боковой трубки, через которую поступал свет, имела прорезь в том месте, где располагался фокус объектива и окуляра. Сквозь прорезь проходило зубчатое колесо, которое приводилось в движение часовым механизмом. Когда колесо было неподвижно и установлено так, что свет проходил между зубцами, то в окуляре трубы был виден свет, отраженный от зеркала на Монмартре.

Когда колесо было приведено в движение, свет исчез. Произошло это в тот момент, когда свет, прошедши между зубцами колеса по направлению к Парижу, встретил на обратном пути зубец, а не промежуток между зубцами.

Для того чтобы свет в окуляре появился вновь, необходимо было удвоить число оборотов колеса.

При дальнейшем увеличении числа оборотов свет вновь исчез.

Важно

В опытах Физо зубчатое колесо имело 720 зубцов. Первое исчезновение сета наблюдалось, когда колесо совершало 12,67 оборота в секунду.

Один оборот оно делало за время, равное 1/12,67 сек. При этом промежуток между зубцами сменялся зубцом. Если зубцов 720, то промежутков тоже 720. Следовательно, смена происходит за время, равное 1/12,672720 = 1/18245 сек.

За это время свет проходил удвоенное расстояние от Сюрена до Монмартра.

Следовательно, его скорость была равной 315 тыс. км/сек.

Таким остроумным методом удалось избежать измерений малых

промежутков времени и все же определить скорость света.

Сравнительно большое расстояние между источником света и зеркалом не позволяло на пути света поместить какую-либо среду. Физо определял скорость света в воздухе.

Скорость света в других средах была определена Фуко в 1862 г. В опытах Фуко расстояние от источника до зеркала было всего в несколько метров. Это позволило поместить на пути света трубку, заполненную водой.

Фуко установил, что скорость распространения света в различных средах меньше, чем в воздухе. В воде, например, она составляет величину, равную ¾ скорости света в воздухе. Полученные результаты разрешили двухвековой спор между корпускулярной и волновой теориями о величине постоянной в законе преломления. Правильное значение в законе преломления дает волновая теория света.

Измерения скорости распространения света в различных средах позволили ввести понятие оптической плотности вещества.

  1. Урок

    За счет солнечной энергии поддерживается средняя годовая температура на Земле около 150 С, а также осуществляется непрерывной круговорот воды в природе.

  2. Документ

    Эйнштейн утверждал, что в основание своей теории он положил два постулата: обобщённый принцип относительности и принцип постоянства скорости света. Однако есть ещё и третий! Им является требование инвариантности (ковариантности) формы

  3. Реферат

    XVI век, по праву считающийся веком великих географических открытий, не только обогатил сокровищницу человеческих знаний о Земле, но и поставил перед исследователями новые практические проблемы.

  4. Документ

    Предложены метод и устройство для измерения анизотропии скорости света в вязких средах. Изготовлено измерительное устройство и выполнена его экспериментальная апробация.

  5. Сказка

    Некоторые древнегреческие философы учили, что мы видим глазами потому, что из глаз выходят тончайшие щупальца, которыми мы ощупываем предметы на расстоянии.

Источник: https://refdb.ru/look/1337846.html

Ссылка на основную публикацию