b7791f53

Принцип работы трансформатора: режимы, схема, назначение, из чего состоит

Трансформаторы тока и напряжения: назначение, устройство, принцип действия. Основная информация об измерительных трансформаторах тока и напряжения

Для того чтобы привести параметры тока и напряжения к требуемым нормам, используют специальные электротехнические устройства, называемые трансформаторами.

В зависимости от назначения, устройства и класса точности трансформаторы тока и напряжения, подразделяются на несколько типов.

В этой статье рассмотрим измерительные трансформаторы напряжения и тока, которые устанавливают в цепях учета электроэнергии.

Трансформатор тока: общие понятия

В цепи учета устанавливают трансформаторы тока (ТТ) класса точности не ниже 0,5 номинальная мощность которых подбирается в соответствии с параметрами сети. Назначение этого устройства – обеспечение контроля потребления электроэнергии. Типы трансформаторов тока: ТПЛ, ТОЛ 10, ТПОЛ, Т-0,66, ТФЗМ и другие.

Трансформаторы тока ТПОЛ-10 с первичной обмоткой 1000 А

Конструкция трансформаторов тока обладает следующими особенностями.

  1. Первичная обмотка выполняется в виде толстой шины (количество витков минимизировано). Такая конструкция позволяет оптимизировать коэффициент трансформации и улучшить работу трансформатора.
  2. Провод вторичной обмотки наматывается на основу, изготовленную из магнитного материала с большой площадью поперечного сечения. Ток вторичной обмотки обычно равен 5А (иногда – 1А).

Виды трансформаторов тока

Следует выделить три основных вида.

  1. Сухие трансформаторы: у них первичная обмотка имеет физическую связь со вторичной. Значение вторичного тока непосредственно зависит от коэффициента трансформации.
  2. Тороидальные: устанавливаются на шину или кабель и потому не имеют первичной обмотки. Первичный ток протекает по проводнику в середине корпуса. Такие трансформаторы с раздвоенным ядром (могут открываться без отключения первичной цепи) могут выполнять защитную функцию (от КЗ сети).
  3. Высоковольтные (масляные или газовые): могут быть с первичной обмоткой или без нее (шинного типа). Кроме измерительной могут иметь дополнительную вторичную обмотку – для обеспечения работы релейной защиты.

Поверка трансформаторов тока

Поверка ТТ выполняется в соответствии ГОСТ 8.217-2003. Нормативный документ предусматривает следующие операции:

  • проведение внешнего осмотра (проверяется целостность корпуса, наличие и правильность нанесения маркировок, паспортные данные);
  • размагничивание: существует несколько способов, один из которых предписывает плавное увеличение тока (в течение 2 мин.) на первичной обмотке от 0 до 100% от номинального значения при полной номинальной нагрузке и затем – плавное снижение до нуля;
  • проверка соответствия полярности клемм первичной и вторичной обмоток (по схеме поверки);
  • определение токовых и угловых погрешностей: выполняется с помощью эталонного трансформатора тока, магазина нагрузок и прибора сравнения (компаратора).

Результаты поверки оформляются протоколом и свидетельством. В определенных случаях предусматривается пломбирование.

Стенд для поверки трансформаторов тока

Трансформаторы напряжения: устройство и принцип действия

Устройство трансформаторов тока и напряжения во многом сходно: вокруг стального сердечника, набранного из листовой стали, наматываются первичные и вторичные обмотки. Трансформаторы напряжения (ТН) бывают одно- и трехфазными. Их назначение – снижение напряжения до необходимого уровня.

В измерительной трехфазной сети устанавливают группу однофазных (на каждую фазу) или трансформатор, в корпусе которого собраны три первичной обмотки и три вторичной. Выходное напряжение трехфазных измерительных ТН – 100 В.

Номинальное напряжение первичной обмотки зависит от параметров сети (35 кВ, 10 кВ, 6 кВ).

Трансформаторы напряжения, кроме измерительных, используются для:

  • подключения измерительных приборов и другого оборудования для обеспечения его безопасной эксплуатации;
  • для расширения пределов измерения подключенных приборов;
  • для обеспечения работы противопожарной автоматики и релейной защиты.

Трансформаторы тока и напряжения, схемы включения которых ничем не отличаются от понижающих трансформаторов, являются измерительными, если расположены перед счетчиками и имеют класс точности не менее 0,5 (для коммерческого учета).

Трансформатор напряжения в ячейке

Некоторые типы трансформаторов напряжения

  1. КНФ-110: масляный трансформатор, состоящий из двух каскадов на общем магнитопроводе.
  2. НОМ-35 или ЗНОМ-35: конструкция таких трансформаторов герметична, внутри корпуса – масло, уровень которого находится на 25-30 мм ниже крышки. Маслорасширителем они не снабжены.
  3. НТМИ-6: трансформатор с изолированной нейтралью.

    Активная его часть состоит из однофазных трансформаторов, помещенных в общий корпус. Внутри корпуса – масло, для доливки которого на крышке находится специальная пробка. Кроме того, на крышке находятся клеммы первичной и вторичных обмоток. Дополнительная вторичная обмотка служит для подключения сигнализации и защиты.

    Сработка происходит при замыкании любой из фаз первичных обмоток на землю. 

  4. НАМИ-10: изготавливаются на напряжение первичной обмотки 10 и 6 кВ, на вторичной – 100 В.
  5. НТМК-6(10): конструкция с трехстержневым магнитопроводом. На стержнях находятся обмотки высокого и низкого напряжения, соединенных «звездой», при этом нулевая точка имеет свой вывод.

    Обмотка разомкнутого треугольника не предусмотрена. Предназначен НТМК-6(10) только для цепей учета электроэнергии.

Поверка трансформаторов напряжения

Поверка ТН выполняется в соответствии с Методикой ГОСТ 8.216-211 ГСИ. Процедура предусматривает:

  • внешний осмотр, при котором проверяется исправность выводов, наличие и соответствие маркировки, целостность изоляции, наличие таблички с маркировкой;
  • определение погрешностей: выполняется с помощью эталонного трансформатора напряжения, магазина нагрузок и компаратора.

Результаты поверки оформляются протоколом и свидетельством. На корпусе (в предназначенном для этого месте) устанавливают пломбу.

В заключение – видеоролик на тему «Трансформаторы тока и напряжения: назначение», где будет рассказано о конструкции НТМИ-10.

Трансформаторы тока и напряжения: назначение, устройство, принцип действия

  • 5.00 / 5 5

Источник: http://recn.ru/transformatory-toka-i-napryazheniya-naznachenie-ustrojstvo-princip-dejstviya

Принцип работы трансформатора напряжения

Во время эксплуатации электросистем часто возникает необходимость преобразовать определенные электрические величины с заданной пропорциональностью.

Это делается для того, чтобы смоделировать определенные процессы в установках, а также провести измерения.

Обратите внимание

Изобретение трансформаторов позволило решать широкий спектр задач относительно передачи электроэнергии на длительное расстояние, а также защиты оборудования. Простота и надежность такого оборудования определили его широкое распространение.

Современный рынок электроустановок предлагает огромное разнообразие трансформаторов различной мощности и назначения. Существует очень много фирм “ссылка 2”, которые занимаются реализацией и обслуживанием данного оборудования, а также способны помочь с выбором. Далее попробуем разобраться, как работает трансформатор напряжения и для чего он нужен.

Назначение трансформатора

Главной задачей данного устройства является изменение значения напряжения. По степени преобразования напряжения выделяют следующие виды трансформаторов:

  • повышающие (коэффициент преобразования больше 1);
  • понижающие (меньше 1);

Повышающие трансформаторы способны значительно повышать напряжение (до 1150 кВ), таким образом уменьшая потери в линии электропередач (ЛЭП). Это свойство облегчает транспортировку электроэнергии.

Непосредственно перед потребителями электричества устанавливаются понижающие ТР. Их функция состоит в том, чтобы понизить напряжение до приемлемых значений (380 В и меньше).

Кроме того, широко распространено применение таких трансформаторов в бытовой технике – в телевизорах, компьютерах, магнитофонах, зарядных устройствах.

Они используются для питания электрических схем и плат, которые не рассчитаны на напряжение 220 В.

Классификация трансформаторов

По назначению ТР бывают:

  • ТР напряжения;
  • ТР тока;
  • защитные;
  • промежуточные;
  • лабораторные.

По конструкции выделяют сухие (охлаждение за счет воздуха) и масляные (магнитопровод и обмотки находятся в резервуаре с маслом) трансформаторы.

По количеству обмоток ТР бывают:

  • двухобмоточные (первичная и вторичная);
  • трехобмоточные (одна первичная и две вторичные или наоборот);
  • многофазные (несколько первичных и вторичных обмоток).

Назначение, устройство, принцип работы трансформатора напряжения

Устройство ТР напряжения включает сердечник и несколько обмоток. Сердечник трансформатора изготавливают штампованием отдельных стальных пластин. Это делается для уменьшения значения вихревых токов, которые наводятся переменным магнитным полем.

Обмотки представляют собой изолированную медную проволоку, которая обматывается вокруг сердечника. К одной из обмоток подключается электростанция (первичная), а к другой – ЛЭП или потребители (вторичная). Подобное устройство трансформаторов напряжения позволяет достичь максимальной эффективности.

Большой каталог силовых трансформаторов приведен на сайте http://lipetsk.vsetmg.ru/.

Важно

Принцип работы трансформатора напряжения описывается явлением электромагнитной индукции. Когда по первичной обмотке проходит переменный ток, он образовывает переменный магнитный поток.

Этот поток проходит сквозь сердечник (магнитопровод) и обе обмотки, в которых наводится ЭДС. В случае, когда вторичная обмотка имеет нагрузку, то в цепи под действием ЭДС начинает протекать ток. Отношение значений ЭДС будет равно отношению числа витков обмоток.

То есть, подбирая определенное количество витков, можно получать нужное напряжение на выходе.

Стоит отметить, что подобный эффект невозможен при подключении к обмотке трансформатора постоянного тока. Все из-за того, что постоянным током создается постоянный магнитный поток, который не наводит ЭДС. Следовательно, энергия между обмотками не передается.

Трансформаторы тока, назначение и принцип действия

По своей сути трансформатор тока (ТТ) есть измерительным аппаратом. Главное назначение данного устройства – понижать значение тока до приемлемых для амперметра значений.

Конструктивно ТТ сходен с трансформатором напряжения. Он так же имеет стальной сердечник и пару обмоток. В таком устройстве первичная обмотка имеет мало витков, но большого сечения.

К ней подключается цепь, в которой нужно провести измерение. Ко вторичной (содержит большее число витков) подключают амперметр.

Благодаря большему количеству витков, ток во вторичной обмотке существенно ниже, чем в первичной, именно поэтому становится возможным подключение измерительного прибора.

Поскольку сопротивление амперметра очень мало, то такой трансформатор находится в состоянии короткого замыкания. Для ТТ это является рабочим режимом, в отличии от ТР напряжения.

Виды трансформаторов тока

  • сухие (обмотки имеют физическую связь, поэтому на ток во вторичной обмотке непосредственно влияет коэффициент трансформации);
  • тороидальные (первичная обмотка отсутствует, вместо нее шина или кабель);
  • высоковольтные.

Следует отметить, что эксплуатироваться трансформатор тока должен только с подключенным амперметром или с закороченной вторичной обмоткой. В противном случае на вторичной обмотке возникает высокое напряжение, способное убить.

Источник: http://www.MisLife.ru/raznoe/princip-raboty-transformatora-napryazheniya.html

Принцип работы и устройство трансформатора

В трансформаторе передача электрической энергии из первичной обмотки во вторичную осуществляется, как и во всех электрических машинах, посредством магнитного потока Ф, который является переменным, т.е. изменяющимся во времени.

В основе работы трансформатора лежит явление электромагнитной индукции, в соответствии с которым значение электродвижущей силы (ЭДС), наведенной в контуре, пропорционально скорости изменения потока Ф, пронизывающего этот контур. Если в контуре имеется несколько последовательно соединенных витков w, то наведенная в катушке ЭДС будет в w раз больше.

Принцип работы трансформатора рассмотрим на примере простейшего однофазного двухобмоточного трансформатора, электромагнитная система которого представлена на рис. 8.2.

Совет

Трансформатор состоит из замкнутого магнитопровода 3 и двух обмоток с числом витков w1 и w2.

Обмотки трансформатора служат для создания магнитного поля, посредством которого осуществляется передача электрической энергии и обеспечивается наведение в обмотках ЭДС, требуемой по условиям эксплуатации. Обмотки выполняют из медных или алюминиевых изолированных проводов круглого или прямоугольного сечения.

Обмотку w1 трансформатора, к которой подводится электрическая энергия (напряжение u1), называют первичной, а обмотку w2, от которой энергия отводится (напряжение u2), — вторичной.

Магнитопровод трансформатора служит для усиления магнитной связи между обмотками и является конструктивным основанием (остовом) для установки и крепления обмоток, отводов и других деталей трансформатора (рис. 8.3).

Магнитопровод набирают из изолированных листов специальной электротехнической стали с относительным содержанием кремния до 5 %.

Толщину листов выбирают из условий получения приемлемого уровня потерь от индуктированных в них вихревых токов при заданной частоте питающего трансформатор источника переменного тока и технологических условий при производстве магнитопровода. При частоте 50 Гц в современных силовых трансформаторах толщина листов равна 0,27—0,35 мм.

Часть магнитопровода, на которой располагается обмотка, называют стержнем, а часть магнитопровода, замыкающая стержни, на которых не располагаются обмотки, называется ярмом.

Если первичную обмотку трансформатора при разомкнутой вторичной включить в сеть переменного тока с напряжением u1, то по ней потечет ток i1 = i0, называемый током холостого хода.

Обусловленная током i0 магнитодвижущая сила (МДС) первичной обмотки iw1 создает в магнитопроводе трансформатора переменный магнитный поток Ф, который почти полностью, за исключением некоторого рассеяния, сцеплен со всеми витками первичной и вторичной обмоток.

Магнитный поток Ф в соответствии с законом электромагнитной индукции наведет в первичной обмотке ЭДС самоиндукции e1, значение которой пропорционально числу витков w1, а во вторичной обмотке — ЭДС e2, пропорциональную числу витков w2.

Обратите внимание

Отношение индуктированных в первичной и вторичной обмотках ЭДС, равное отношению чисел витков этих обмоток, называют коэффициентом трансформации K = el/e2 = wl/w2.

Таким образом, подбирая число витков обмоток, можно при заданном напряжении ul, которое примерно равно ЭДС el, получить требуемое выходное напряжение трансформатора u2 = e2.

Если ul > u2 (wl > w2), т.е. K > 1, трансформатор называют понижающим, а при ul < u2 (wl < w2) — повышающим.

При подключении вторичной обмотки к сопротивлению нагрузки Zн по ней потечет переменный ток i2. При этом в первичной обмотке возникнет ток i1, который поддерживает магнитный поток постоянным. Вследствие этого обеспечивается равновесие между ЭДС el, наведенной в первичной обмотке, и напряжением в сети ul.

Таким образом, при нагрузке трансформатора магнитный поток создается совместным действием магнитодвижущих сил первичной и вторичной обмоток.

При замкнутом магнитопроводе, собранном из пластин электротехнической стали, обладающей небольшим магнитным сопротивлением, МДС первичной обмотки iw1 (при разомкнутой вторичной обмотке) составляет 0,2—3,0 % МДС обмоток при номинальной нагрузке, поэтому можно принять, что i1w1  i2w2. Следовательно, токи, протекающие в первичной и вторичной обмотках, обратно пропорциональны отношению чисел их витков i1/i2 = w2/w1.

Для силовых трансформаторов установлены стандартные обозначения (маркировка) начал и концов (выводов) обмоток.

В однофазном трансформаторе начало и конец обмотки высшего напряжения (ВН) обозначается соответственно прописными буквами А и X, а обмотки низшего напряжения (НН) — строчными латинскими буквами а и х. При наличии третьей обмотки с промежуточным (средним) напряжением (СН) начало и конец обмотки обозначают соответственно Аm и Хm.

Важно

В трехфазном трансформаторе начала и концы обмоток ВН обозначаются соответственно А, В, С и X, Y, Z и т.д.

В трехфазных трансформаторах обмотки могут быть соединены по схемам «звезда», «треугольник» или «зигзаг», которые соответственно обозначают русскими буквами У и Д и латинской Z. При выводе от нейтрали (общей точки обмоток фаз) у схемы «звезда» или «зигзаг» отвода (ответвления) его обозначают 0, добавляя к буквенным обозначениям схем соединения обмоток индекс «н» (Ун).

Схемы соединения трехфазного трансформатора обозначаются в виде дроби, в числителе которой ставят обозначение схемы соединения обмотки ВН, а в знаменателе — НН, например для трансформатора с обмоткой ВН, соединенной по схеме треугольник, а НН — в звезду с выведенной нейтралью обозначение имеет вид Д/Ун.

При обслуживании трансформаторов кроме схем соединения необходимо знать взаимное направление ЭДС в обмотках ВН и НН.

Если две обмотки 1 и 2 размещены на одном и том же стержне и пронизываются одним и тем же потоком Ф, то при одинаковом направлении намотки и обозначении выводов (концов) (рис. 8.

4, а) наведенные ЭДС одинаково направлены (от концов к началам) и, следовательно, совпадают по фазе.

Для характеристики сдвига фаз линейных ЭДС обмоток ВН и НН введено понятие группы соединения обмоток трансформатора.

Группа соединения обозначается целым числом, которое получено от деления на 30° угла сдвига между линейными ЭДС на одноименных выводах обмоток ВН и НН трансформатора, причем отсчет угла производится от вектора ЭДС обмотки ВН по направлению движения часовой стрелки.

На рис. 8.

Совет

4, а сдвиг между ЭДС Е1 и Е2 обмоток АХ и ах равен нулю, поэтому группа соединений обмоток обозначается как I/I-0, где «I» говорит об однофазном варианте трансформатора, при этом ЭДС высшего напряжения Е1 ассоциируется с минутной стрелкой часов и условно направляется на циферблате часов на цифру 12. Часовая стрелка часов представляет собой ЭДС низшего напряжения Е2 и обозначает группу соединения.

Фазовый сдвиг между фазными ЭДС обмоток ВН и НН зависит как от обозначения выводов, так и от направления намотки. При размещении обмоток на одном стержне этот сдвиг может быть равным либо 0, либо 180°.

На рис. 8.

4, б, в при изменении обозначений концов обмотки НН (рис. 8.4, б) или изменении направления намотки обмотки НН (рис. 8.4, в) ЭДС Е2 поворачивается на угол 180°, что дает группу соединений I/I-6.

В трехфазных трансформаторах схемы соединения У, Д, Z могут образовывать 12 различных групп со сдвигом фаз линейных ЭДС через 30°.

На рис. 8.

5 для примера приведены схема соединения обмоток У/У и соответствующая векторная диаграмма для нулевой группы, которая обозначается У/У-0 (рис. 8.5, а), а также векторная диаграмма для одиннадцатой группы при соединении обмоток У/Д (обозначение У/Д-11) (рис. 8.5, б).

Из всех возможных групп соединения трехфазных двухобмоточных трансформаторов стандартизировано только две группы: 0 и 11 — с выводом в случае необходимости нулевой точки «звезды» или «зигзага», а для однофазных трансформаторов — только с соединением I/I-0.

Для трансформации трехфазного тока и напряжения применяют или три однофазных трансформатора (рис. 8.6, а), или один трехфазный трансформатор (рис. 8.6, б), в котором общий для трех фаз магнитопровод может быть образован из трех однофазных.

В самом деле, если три однофазных трансформатора расположить, как показано на рис. 8.7, а, то стержни магнитопроводов, на которых не размещены обмотки, можно конструктивно объединить в один.

Обратите внимание

Учитывая, что в трехфазной системе сумма фазных токов IA + IB + IC = 0, а следовательно, и сумма потоков равна нулю, то надобность в объединенном стержне вообще отпадает. Полученный таким образом магнитопровод (рис. 8.7, б) является пространственным трехфазным.

В реальных конструкциях используют магнитопровод, называемый плоским стержневым трехфазным; он образуется, если у пространственного магнитопровода убрать ярма фазы В и все три стержня расположить в одной плоскости (рис. 8.7, в).

Трехфазные трансформаторы с плоскими стержневыми магнитопроводами получили наибольшее распространение, а свойственная им магнитная несимметрия фаз существенного значения при эксплуатации не имеет.

На рис. 8.

8 представлена конструкция пространственного ленточного магнитопровода, состоящего из трех овальных секций, имеющих фасонную форму сечения и навитых из ленты холоднокатаной стали переменной ширины при безотходном раскрое стали и высоком коэффициенте заполнения сечения стержня активной сталью. Обмотки наматываются после сборки системы непосредственно на стержни на специальном стенде.

Автотрансформаторы

Для передачи электрической энергии с незначительным изменением напряжения и тока применяются автотрансформаторы, у которых, в отличие от обычного трансформатора, обмотки имеют не только магнитные, но и электрические связи. Автотрансформатор, как и трансформатор, может быть понижающим или повышающим (рис. 8.9).

Электромагнитная (расчетная) мощность автотрансформатора меньше расчетной мощности двухобмоточного трансформатора вследствие того, что часть мощности передается во вторичную сеть за счет непосредственной электрической связи обмоток.

За счет уменьшения массы металла обмоток и стали магнитопровода КПД автотрансформатора выше по сравнению с трансформатором такой же номинальной мощности.

К числу недостатков автотрансформаторов, ограничивающих их применение, относится усложнение их релейной защиты и регулирования напряжения, а также повышенная опасность атмосферных перенапряжений из-за электрической связи обмоток. Автотрансформатор имеет, кроме того, повышенные токи короткого замыкания.

Автотрансформаторы используются для соединения электрических сетей высокого напряжения, пуска двигателей переменного тока большой мощности и т.д.

Источник: https://megaobuchalka.ru/3/12825.html

Устройство и принцип действия трансформатора. Проверка знаний

Вопрос 1. Из чего состоит трансформатор? Ответ. Простейший трансформатор состоит из замкнутого магнитопровода и двух обмоток в виде цилиндрических катушек.

Одна из обмоток подключается к источнику переменного синусоидального тока с напряжением u1 и называется первичной обмоткой. К другой обмотке подключается нагрузка трансформатора. Эта обмотка называется вторичной

обмоткой.

Вопрос 2. Как осуществляется передача энергии из одной обмотки в другую?
Ответ. Передача энергии из одной обмотки в другую осуществляется путём электромагнитной индукции.

Переменный синусоидальный ток i1, протекающий по первичной обмотке трансформатора, возбуждает в магнитопроводе переменный магнитный поток Фс, который пронизывает витки обеих обмоток и наводит в них ЭДС
и
с амплитудами пропорциональными числам витков w1 и w2.

При подключении ко вторичной обмотке нагрузки в ней под действием ЭДС e2 возникает переменный синусоидальный ток i2 и устанавливается некоторое напряжение u2.

Электрическая связь между первичной и вторичной обмотками трансформатора отсутствует и энергия во вторичную обмотку передаётся посредством магнитного поля, возбуждаемого в сердечнике.

Вопрос 3. Чем является вторичная обмотка трансформатора по отношению к нагрузке?
Ответ. По отношению к нагрузке вторичная обмотка трансформатора является источником электрической энергии с ЭДС e2. Пренебрегая потерями в обмотках трансформатора можно считать, что напряжение питающей сети U1 ≈ E1, а напряжение в нагрузке U2 ≈ E2.

Вопрос 4. Что такое коэффициент трансформации?
Ответ. Так как ЭДС обмоток пропорциональны числам витков, то соотношение напряжений питания трансформатора и нагрузки также определяется соотношением чисел витков обмоток, т.е.
U1/U2 ≈ E1/E2 ≈ w1/w2 = k.
Величина k называется коэффициентом трансформации.

Вопрос 5. Какой трансформатор называется понижающим?
Ответ. Если число витков вторичной обмотки меньше числа витков первичной w2 < w1, то k > 1 и напряжение в нагрузке будет меньше напряжения на входе трансформатора. Такой трансформатор называется понижающим.

Вопрос 6. Какой трансформатор называется повышающим?
Ответ. Если число витков вторичной обмотки больше числа витков первичной w2 > w1, то k < 1 и напряжение в нагрузке будет больше напряжения на входе трансформатора. Такой трансформатор называется повышающим.

Вопрос 7. Какая обмотка трансформатора называется обмоткой высшего напряжения (ВН)?
Ответ. Обмотка, подключаемая к сети с более высоким напряжением, называется обмоткой высшего напряжения (ВН). Вторая обмотка называется обмоткой низшего напряжения (НН).

Вопрос 8. Какие трансформаторы называются «сухими»?
Ответ. Трансформаторы, в которых отвод тепла производится потоком воздуха, называются «сухими» трансформаторами.

Вопрос 9. Какие трансформаторы называются «масляными»? Ответ. В тех случаях, когда воздушным потоком невозможно отвести тепловую энергию так, чтобы обеспечить ограничение

температуры изоляции обмоток на допустимом уровне, для охлаждения используют жидкую среду, погружая трансформатор в бак со специальным трансформаторным маслом, которое одновременно выполняет роль хладоагента и электрической изоляции. Такие трансформаторы называются «масляными».

Вопрос 10. Как трансформаторы обозначают на электрических схемах? Ответ.

На рисунке показаны условные обозначения однофазных двухобмоточных (1, 2, 3) и многообмоточных (7, 8) трансформаторов, а также трёхфазных трансформаторов (12, 13, 14, 15, 16). Здесь же показаны обозначения однофазных (4, 5) и трёхфазных (9, 10) автотрансформаторов и измерительных трансформаторов напряжения (6) и тока (11).

Вопрос 11. Чем определяются условия работы и свойства трансформатора?
Ответ. Условия работы и свойства трансформатора определяются системой параметров, называемых номинальными, т.е. значениями величин, соответствующих расчётному режиму работы трансформатора. Они указываются в справочных данных и на табличке, прикрепляемой к изделию.

    Номинальными параметрами трансформатора являются:
  • первичное линейное напряжение U1N, в В или кВ;
  • вторичное линейное напряжение U2N, измеряемое при отключённой нагрузке и номинальном первичном напряжении, в В или кВ;
  • токи первичной и вторичной обмоток I1N и I2N, в А или кА;
  • полная мощность SN, равная для однофазных и трёхфазных трансформаторов соответственно, в В⋅А или кВ⋅А.

Вопрос 12. Как влияет рабочая частота трансформатора на его массу и габариты?
Ответ. Повышение рабочей частоты трансформатора позволяет при прочих равных условиях существенно уменьшить массу и габариты изделия.

Действительно, напряжение первичной обмотки примерно равно ЭДС, наводимой в ней магнитным потоком в сердечнике Φc, а полная мощность, например, однофазного трансформатора равна

гдеи– заданные номинальные значения индукции в сердечнике и плотности тока в обмотке, а Sc ∼ l2 и Si – поперечное сечение сердечника и суммарное сечение w1 витков обмотки.

Следовательно, увеличение частоты питания f позволяет пропорционально уменьшить сечение сердечника при той же мощности трансформатора, т.е. уменьшить в квадрате его линейные размеры l.

Вопрос 13. Для чего служит магнитопровод трансформатора?
Ответ. Магнитопровод трансформатора служит для увеличения взаимной индукции обмоток и в общем случае не является необходимым элементом конструкции.

При работе на высоких частотах, когда потери в ферромагнетике становятся недопустимо большими, а также при необходимости получения линейных характеристик, применяются трансформаторы без сердечника, т.н. воздушные трансформаторы.

Важно

Однако в подавляющем большинстве случаев магнитопровод является одним из трёх основных элементов трансформатора. По конструкции магнитопроводы трансформаторов подразделяются на стрежневые и броневые.

Вопрос 14. Каким условиям должна удовлетворять конструкция обмоток трансформатора? Ответ. Конструкция обмоток трансформаторов должна удовлетворять условиям высокой электрической и механической прочности, а также термостойкости.

Кроме того, технология их изготовления должна быть по возможности простой, а потери в обмотках минимальными.

Вопрос 15. Из чего изготавливаются обмотки трансформатора?
Ответ. Обмотки изготавливаются из медного или алюминиевого провода. Плотность тока в медных обмотках масляных трансформаторов находится в пределах 2…4,5 А/мм2, а в сухих трансформаторах 1,2…3,0 А/мм2. Верхние пределы относятся к более мощным трансформаторам.

В алюминиевых обмотках плотность тока на 40…45% меньше. Провода обмоток могут быть круглого сечения площадью 0,02…10 мм2 или прямоугольного сечения площадью 6…60 мм2. Во многих случаях катушки обмоток наматываются из нескольких параллельных проводников. Обмоточные провода покрыты эмалевой и хлопчатобумажной или шёлковой изоляцией.

В сухих трансформаторах применяются провода с термостойкой изоляцией из стекловолокна.

Вопрос 16. Как подразделяются обмотки трансформатора по способу расположения на стержнях?
Ответ. По способу расположения на стержнях обмотки подразделяются на концентрические и чередующиеся. Концентрические обмотки выполняются в виде цилиндров, геометрические оси которых совпадают с осью стержней. Ближе к стержню обычно располагается обмотка низшего напряжения, т.

к. это позволяет уменьшить изоляционный промежуток между обмоткой и стержнем. В чередующихся обмотках катушки ВН и НН поочерёдно располагают вдоль стрежня по высоте. Такая конструкция позволяет увеличить электромагнитную связь между обмотками, но значительно усложняет изоляцию и технологию изготовления обмоток, поэтому в силовых трансформаторах чередующиеся обмотки не используются.

Вопрос 17. Как выполняется изоляция обмоток трансформатора? Ответ. Одним важнейших элементов конструкции обмоток трансформатора является изоляция. Различают главную и продольную изоляцию. Главной называется изоляция обмотки от стержня, бака и других обмоток.

Её выполняют в виде изоляционных промежутков, электроизоляционных каркасов и шайб. При малых мощностях и низких напряжениях функцию главной изоляции выполняет каркас из пластика или электрокартона, на который наматываются обмотки, а также несколько слоёв лакоткани или картона, изолирующих одну обмотку от другой.

Продольной называется изоляция между различными точками одной обмотки, т.е. между витками, слоями и катушками. Межвитковая изоляция обеспечивается собственной изоляцией обмоточного провода.

Для междуслойной изоляции используются несколько слоёв кабельной бумаги, а междукатушечная изоляция осуществляется либо изоляционными промежутками, либо каркасом или изоляционными шайбами.

Конструкция изоляции усложняется по мере роста напряжения обмотки ВН и у трансформаторов, работающих при напряжениях 200…500 кВ, стоимость изоляции достигает 25% стоимости трансформатора.

Источник: http://electrichelp.ru/ustrojstvo-i-princip-dejstviya-transformatora-proverka-znanij/

Силовые трансформаторы. Виды и устройство. Работа и применение

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции.

Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности.

Совет

Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца.

Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты.

Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Вид уличного силового трансформатора

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:

  • По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
  • По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
  • По количеству обмоток. Двухобмоточные и трехобмоточные.
  • По месту монтажа. Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д.

При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой.

Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой.

Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

Обратите внимание

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях.

Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной.

Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток.

Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС.

Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости.

Это значит, что трансформатор можно применить как повышающий прибор, или понижающий.

Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:

  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.

Свойства и расчет трансформатора

Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:

  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Важно

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/silovye-transformatory/

Принцип работы и предназначение трансформатора

Принцип действия:

  1. В устройстве существуют 2 обмотки, их называют первичной и вторичной. К внешнему источнику подключается только первичная обмотка, тогда как вторичная обмотка предназначена для снятия напряжения.
  2. Включая в электросеть первичную обвивку, в магнитопроводе создаётся магнитное поле (переменное) от первичной обмотки, в результате чего образуется ток вторичной обмотки, если его замкнуть через приёмник.
  3. Синхронно в первичной обвивке образуется нагрузочный ток.
  4. Отсюда происходит трансформирование электрической энергии, когда первичная сеть передаёт её вторичной. В результате, приёмник получит ту величину, на которую рассчитан прибор.

схема работы

Явление взаимной индукции, является основой работы трансформатора:

  1. Чтобы улучшить магнитную связь 2 обмоток, они укладываются на магнитопровод стальной структуры.
  2. В свою очередь, делается изоляция не только между ними, но и с магнитопроводом.
  3. Каждая обмотка имеет свою маркировку. Если обмотка с высоким напряжением, её обозначают (ВН), низким – (НН).
  4. Первичная обмотка подключается к электросети, вторичная – к приёмнику.

Напряжение на обвивках имеют различную величину, и от того в каких целях будет применяться устройство, зависит величина на обвивках:

  1. Повышающий трансформатор будет иметь меньше напряжение на первичной обвивке, чем на второй.
  2. Понижающий прибор, в точности всё наоборот.

Использование их различно:

  1. На больших расстояниях используются повышающие приборы.
  2. Если надо распределить электроэнергию потребителям – понижающие.

Существуют приборы с 3 обмотками, когда надо получить не только высокое и низкое напряжение, но и среднюю величину (СН).

Обвивки такого устройства также изолированы друг от друга и имеют подключение от электроэнергии одной обвивкой, когда 2 другие подсоединяются к разным приёмникам:

  1. Обвивки имеют форму цилиндра и выполняются намоткой медного провода, имеющего круглое сечение для малых токов.
  2. Для тока большой величины используются шины с прямоугольным сечением.
  3. На сердечник магнитопровода делается обвивка для малого напряжения, так как она легко изолируется, по сравнению с обвивкой высокого номинала.
  4. Сам сердечник исполняется круглой формы, если обвивка в форме цилиндра. Это делается для уменьшения немагнитных зазоров, и уменьшить длину витков обвивок. Отсюда уменьшится и масса меди на заданную площадь сечения круглого магнитопровода.
  5. Круглый стержень проходит сложный процесс сборки из стальных листов. И чтобы упростить задачу, в устройствах с большим напряжением используются стержни со ступенчатым поперечным сечением, когда их число достигает всего 17 штук.
  6. В мощных агрегатах устанавливаются дополнительные вентиляционные каналы, для охлаждения магнитопровода. Это достигается расположением их перпендикулярно и параллельно поверхности листов из стали.
  7. В менее мощных устройствах сердечник выполняется с прямоугольным сечением.

Назначение и типы

трехфазный трансформатор

Трансформатор, можно назвать преобразователем одной величины напряжения или тока в другую.

Они могут быть:

  • трёхфазными;
  • однофазными;
  • понижающими;
  • повышающими;
  • измерительными и т.д.;

Назначение прибора: передаёт и распределяет электроэнергию заказчику.

В приборе есть активные компоненты: обвивка и сердечник магнитопоровода. В свою очередь, сердечник может быть стержневым и броневым. Для них используется холоднокатаная горячекатаная электротехническая сталь.

Обвивку используют непрерывную, винтовую, цилиндрическую, дисковую.

Среди современных изделий можно отметить следующие:

  • тороидальные;
  • броневые;
  • стержневые;

Они имеют характеристики похожие друг с другом, с высокой надёжностью. Единственное, что их различает – это способ изготовления.

В стержневом варианте, обвивка наматывается вокруг сердечника, тогда как в броневом типе идёт включение в сердечник. Поэтому, в стержневом типе, обвивку можно увидеть и располагается она только горизонтально, а в броневом, она скрыта, но может быть, как горизонтально, так и вертикально размещена.

Какой бы тип мы не рассматривали, у него имеются 3 компонента:

  • система охлаждения;
  • обвивка;
  • магнитопровод;

За счёт приборов удаётся значительно повысить напряжённость, идущую с электрических станций, на дальние расстояния, при этом, потери энергии будут минимальные по проводам. На основании вышеизложенного, можно использовать провода на линиях передач, с меньшей площадью сечения.

Потребителю также можно уменьшать потребление энергии с высоковольтных линий до номинальных значений (380, 220, 127 В).

Область применения и виды

трансформатор в телевизоре

Бытовые трансформаторы защищают технику при перепадах напряжения.

Поэтому применяют их в следующих приборах:

  • в освещении;
  • осциллографах;
  • телевизорах;
  • радиоприёмниках;
  • измерительных устройствах и т.д;

Сварочные экземпляры, разделяющие силовую и сварочную сеть, активно используются при сварке и электротермических конструкциях, где успешно понижают величину напряжения до обязательных номиналов.

В энергосети используются масляные агрегаты, где напряжённость 6 и 10 кВ.

Многие автоматические конструкции используют трансформаторы, где напряжение на обвивках несуидальное.

Виды:

  1. Вращающийся. Передача сигнала ведётся на объекты, которые вращаются. Например, видеомагнитофон, где передача сигнала ведётся на барабан узла магнитной головки. Здесь существуют 2 половины магнитопровода и вращение их происходит с минимальным зазором в отношении друг друга. На основании этого, реализуется большая скорость оборотов, в контактном способе сигнала достичь такого эффекта не считается возможным.
  2. Пик-трансформатор. В этом варианте происходит преобразование синусоидального напряжения в сплески, имеющие пикообразную форму. Активно используются в управлении тиристоров, а также электронных и полупроводниковых устройств.
  3. Согласующий. Принимает участие в согласовании сопротивлений в разных промежутках электронной схемы, при этом, форма сигнала искажается минимально. Синхронно обеспечивается гальваническая развязка между зонами схем.
  4. Разделительный. Здесь 2 обмотки не соединены между собой электрически. Такая схема даёт возможность повысить безопасность электрических сетей. Когда происходит случайное одновременное прикосновение к токоведущей части и земли, выдаётся гальваническая развязка электрической цепи.
  5. Импульсный. В этом варианте преобразуются импульсные сигналы за очень короткий промежуток времени (десятки микросекунд), при этом, искривление конфигурации импульса минимально.
  6. По напряжению. Здесь происходит конверсия большого напряжения в низкую величину. Этот вариант позволяет изолировать измерительные и логические цепи от большого напряжения.
  7. По току. В этом типе измеряются цепи с большим током. Например, в конструкциях релейных щитов электроэнергетических систем. Поэтому, применяются достаточно жёсткие требования к точности.
  8. Автотрансформатор. В этом типе соединение 2 обмоток ведётся напрямую. В результате, создаётся электрическая и электромагнитная связь, чем объясняется высокий КПД этого вида. Недостатком такого устройства, можно назвать отсутствие изоляции, то есть не существует гальваническая развязка.
  9. Силовой. Этот вариант используется при изменяемом токе и преобразует электрическую энергию в установках и электросетях. Широко применяется этот тип на линиях ЛЭП с высокой напряжённостью (35-750 кВ), городских электрических сетях (10 и 6 кВ).
  10. Сдвоенный дроссель. Наличие 2 равных обвивок, даёт возможность получить более результативный дроссель, чем обычный. Их используют на вводе фильтра в блоке питания, а также в звуковом оборудовании.
  11. Трансфлюксор. Оставшаяся намагниченность магнитного провода имеет большую величину, что позволяет использовать его для сохранения сведений.

Немного из истории

Изобретение трансформаторов начиналось ещё в 1876 году, великим русским учёным П.Н. Яблоковым. Тогда его изделие не имело замкнутого сердечника, который появился значительно позже – 1884 год. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году, М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый 3-х фазный асинхронный двигатель и трансформатор.

Уже через пару лет, электромеханик предоставил свои работы на выставке, где произошла презентация трёхфазной высоковольтной линии, имеющую протяженность 175 км, где успешно повышалась и понижалась электроэнергия.

Совет

Немного позже, пришла очередь масляным агрегатам, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

В 20 столетии появились изделия более компактные и экономичные. Производителями продукции являлись иностранные фирмы. На настоящий момент, выпуском продукции занимаются и отечественные фирмы.

0,00, (оценок: 0)Загрузка…

Источник: https://slarkenergy.ru/oborudovanie/transformator/princip-dejstviya.html

Ссылка на основную публикацию