b7791f53

Основы строения атома для чайников. схемы, теории современного представления об атоме

Строение атома. Атом – сложная частица

Понятие «атом» пришло к нам из далекой античности, но совершенно изменило тот первоначальный смысл, который вкладывали в него древние греки (в переводе с греческого «атом» означает «неделимый»).

Этимология названия «неделимый» отражает сущность атома с точностью до наоборот. Атом делим и состоит из элементарных частиц.

Видеоурок по теме “Строение атома”

Презентация по теме “Атом сложная частица”

Сложность строения атома доказана фундаментальными открытиями, сделанными в конце XIX и начале XX в. в результате изучения природы катодных лучей (Дж. Томсон, 1897 г.), открытия явления фотоэффекта (А. Г. Столетов, 1889 г.), открытия радиоактивности химических элементов (А. Беккерель, М. Склодовская-Кюри, 1896—1899 гг.), определения природы а-частиц (эксперименты Э. Резерфорда, 1889—1900 гг.). Ученые пришли к заключению, что атомы обладают собственной структурой, имеют сложное строение. Как же развивалась классическая теория строения атома?

Гипотеза Дж. Томсона о структуре атома — первая попытка объединить имевшиеся научные данные о сложном составе атома в «модель» атома.

В 1904 г. в работе «О структуре атома» Дж. Томсон дал описание своей модели, получившей образное название «сливового пудинга». В этой модели атом уподоблен сферической капле пудинга с положительным зарядом. Внутрь сферы вкраплены отрицательно заряженные «сливины»-электроны. Электроны совершают колебательные движения, благодаря которым атом излучает электромагнитную энергию. Атом в целом нейтрален.
Модель атома Дж. Томсона не была подтверждена экспериментальными фактами и осталась гипотезой. Представления о составе атома и движении электронов в нем вошли в модель атома Э.Резерфорда.

Планетарная модель атома Э. Резерфорда (1911 г.), согласно которой атом состоит из положительно заряженного ядра и электронов, вращающихся вокруг ядра по замкнутым орбитам подобно движению планет вокруг Солнца. Э. Резерфорд — основоположник современного учения об атоме — построил наглядную теоретическую модель атома, которой формально мы пользуемся и сейчас.

Классическая теория Резерфорда не могла объяснить излучение и поглощение энергии атомом.

Квантовые постулаты Н. Бора (1913 г.) внесли в планетарную модель атома Э. Резерфорда квантовые представления. Постулаты Н. Бора опирались на теоретические идеи М. Планка (1900 г.) и А. Эйнштейна (1905 г.).

  • Первый постулат. Электрон вращается вокруг ядра по строго определенным замкнутым стационарным орбитам в соответствии с «разрешенными» значениями энергии Ех, Е2, …, Еn, при этом энергия не поглощается и не излучается.
  • Второй постулат. Электрон переходит из одного «разрешенного» энергетического состояния в другое, что сопровождается излучением или поглощением кванта энергии.

Бор внес квантовые представления в строение атома, но он использовал традиционные классические понятия механики, рассматривая электрон как частицу, движущуюся со строго определенными скоростями по строго определенным траекториям.

Его теория была построена на противоречиях. В 1932 г. была разработана протонно-нейтронная теория ядра, согласно которой ядра атомов состоят из протонов (11р) и нейтронов (01n).

Атом — электронейтральная система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов.
Электроны, протоны и нейтроны называют элементарными частицами.

Каковы же свойства этих частиц?

Корпускулярно-волновые свойства микромира. Элементарные частицы, а также построенные из них атомные ядра, атомы и молекулы имеют ничтожно малые массы и размеры и поэтому обладают своими особыми свойствами не похожими на те, которые имеют объекты окружающего нас макромира.

Они образуют свой, специфический мир — микромир, который живет по особым законам, диктуемым квантовой механикой — наукой о строении и свойствах элементарных частиц, ядер, атомов и молекул, об их превращениях и явлениях, сопровождающих эти превращения.

Обратите внимание

Квантовая механика характеризует частицы микромира как объекты с двойственной природой — корпускулярно-волновым дуализмом, они являются одновременно и частицами (корпускулами), и волнами.

Корпускулярно-волновой дуализм объектов микромира подтвержден и экспериментально знакомыми вам из курса физики интерференцией и дифракцией электронов, протонов, нейтронов, атомов и т. д. Электрон — частица, определяющая наиболее характерные химические свойства атомов и молекул. Двойственная природа электрона может быть подтверждена на опыте.

Если электроны, испускаемые источником, например катодом, пропускать через маленькие отверстия в пластинке, поставленной на их пути, то они, попадая на фотопластинку, вызывают ее почернение. После проявления фотопластинки на ней можно увидеть совокупность чередующихся светлых и темных колец, то есть дифракционную картину (рис. 1).Рис. 1.

Электронограммы газов (слева) и кристаллов (справа). Центральное пятно обусловлено нерассеянным пучком электронов, а кольца — электронами, рассеянными под разными углами

Дифракционная картина включает в себя как собственно дифракцию — огибание волной препятствия, так и интерференцию, то есть наложение волн друг на друга.

Эти явления доказывают наличие у электрона волновых свойств, так как только волны способны огибать препятствия и налагаться друг на друга в местах их встречи. Однако, попадая на фотослой, электрон дает почернение лишь в одном месте, что свидетельствует о наличии у него корпускулярных свойств. Будь он только волной, он более или менее равномерно засвечивал бы всю пластинку.

Вследствие дифракции электрон, пройдя отверстие, может в принципе попасть в любую точку фотопластинки, но с разной вероятностью, то есть можно говорить о вероятности обнаружения электрона в той или иной области фотослоя, а в общем случае — в той или иной области пространства. Поэтому движение электрона и в атоме нельзя рассматривать как движение точечного заряда по строго определенной замкнутой траектории.

Источники:

Источник: http://alximiki.blogspot.com/2013/09/blog-post.html

Строение атома

Ричард Фейнман. Лауреат Нобелевской премии.

К началу XX в. накопилось достаточно фактов, указывающих на сложное строение атома. Первая модель атома была предложена в 1903 г. Томсоном (“пудинг с изюмом”).

Модель атома Томсона оказалась в противоречии с результатами опыта Резерфорда по исследованию распределения положительного заряда в атоме при бомбардировке его a -частицами.

Схема опыта Резерфорда по рассеянию a-частиц на золотой фольге. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп.

а) результат, который ожидал увидеть Резерфорд.

b) наблюдалось в действительности.

Сопоставляя результаты опыта, Резерфорд высказал гипотезу:

1.  В атоме есть пустоты.

2  В атоме есть массивная положительно заряженная частица (ядро).

3. В атоме электроны обращаются вокруг ядра.

На основании данной гипотезы им была предложена планетарная модель атома.

Данная модель оказалась в противоречии с классической физикой.

Классическая физика указывает на то, что движущийся ускоренно по орбите электрон должен непрерывно излучать энергию и упасть на ядро за время порядка 10-8 с.

Законы классической физики оказались не применимы для объяснения существования атома.

Выход из затруднительного положения нашел датский ученый Н.Бор. В основу своей теории Н.Бор положил два постулата.

На основе данных постулатов он предложил качественно новую модель атома, получившую название модель Резерфорда-Бора. Согласно этой теории электрон, вращающийся вокруг ядра, должен изменять свою энергию в момент перехода с одной разрешенной орбиты на другую не плавно, а скачком (дискретно).

Модель атома водорода с боровскими орбитами.

Важно

Для наглядного представления возможных энергетических состояний атомов, используетсяэнергетическая диаграмма.

Переходы из одного стационарного состояния в другое на энергетической диаграмме обозначаются вертикальными стрелками.

Выбор начала отсчета энергии атома от 0, что соответствует отрыву электрона от ядра.

n=1 – основное состояние атома

k=n+1 возбужденное состояние атома (n=1,2,3,…..).

Боровских орбит в атоме в действительности не существует. Это всего лишь условный геометрический образ,  удобная модель для объяснения свойств атома водорода.

Постулаты Н.Бора позволили объяснить происхождение линейчатых спектров излучения и поглощения водорода.

Квантовые переходы на энергетической диаграмме позволяют объяснить появление различных спектральных серий водорода, как в видимой части спектра, так и в ультрафиолетовой и инфракрасной областях.

I – серия Лаймана

II – серия Бальмера

III – серия Пашена

IV – серия Брекетта

V – серия Пфундта

Атомы поглощают или излучают различные кванты энергии, поэтому во всей совокупности атомов происходят различные квантовые переходы и в спектре водорода наблюдются одновреммено все спектральные серии.

Экспериментальное подтверждение правильности основных положений квантовой теории Н.Бора явился опыт Франка и Герца (1913 г.), который показал, что передача энергии от электрона к атомам ртути происходит дискретно.

Опорный конспект к уроку:

Краткие итоги:

Совет

К началу XX в. накопилось достаточно фактов, указывающих на сложное строение атома. Первая модель была предложена в 1903 г. Томсоном.

Но она оказалась в противоречии с результатами опыта Резерфорда по исследованию распределения положительного заряда в атоме.

Сопоставляя результаты опыта, Резерфорд высказал гипотезу на основе, которой им была предложена планетарная модель атома. Данная модель оказалась в противоречии с классической физикой.

Выход из затруднительного положения нашел датский ученый Н. Бор. В основу своей теории Н. Бор положил два постулата.

На основе данных постулатов он предположил качественно новую модель атома, получившую название модель Резерфорда-Бора.

Согласно этой теории электрон, вращающийся вокруг ядра, должен изменять свою энергию в момент перехода с одной разрешенной орбиты на другую не плавно, а скачком.

Постулаты Н. Бора позволили объяснить происхождение линейчатых спектров излучения и поглощения.

Экспериментальное подтверждение правильности основных положений квантовой теории Н. Бора явился опыт Франка и Герца.

Объяснив строение атома водорода, теория Бора была не с состоянии объяснить строение других атомов. В результате пересмотра теории Бора Л. де Бройль высказал гипотезу о волновых свойствах частиц. Впервые экспериментально К. Девидсон и Л. Джермер в 1927 г. обнаружили волновые свойства электрона.

Источник: http://fizclass.ru/stroenie-atoma/

Квантово-механическая модель строения атома

Модели строения атома

Модель Томсона

Первая модель строения атома была предложена Дж. Томсоном в 1904 г.,

согласно которой атом – положительно заряженная сфера с вкрапленными в нее электронами. Несмотря на свое несовершенство томсоновская модель

позволяла объяснить явления испускания, поглощения и рассеяния света атомами, а также установить число электронов в атомах легких элементов.

Модель Резерфорда

Модель Томсона была опровергнута Э. Резерфордом (1911 г.), который доказал, что положительный заряд и практически вся масса атома сконцентрированы в малой части его объема – ядре, вокруг которого двигаются электроны. Эта модель строения атома известна как планетарная,

т. к. электроны вращаются вокруг ядра подобно планетам солнечной системы.

Согласно законам классической электродинамики, движение электрона по окружности вокруг ядра будет устойчивым, если сила кулоновского притяжения будет равна центробежной силе. Однако, в соответствии с теорией электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро. Однако атом устойчив.

Обратите внимание

К тому же при непрерывном излучении энергии у атома должен наблюдаться непрерывный, сплошной спектр. На самом деле спектр атома состоит из отдельных линий и серий.

Таким образом, данная модель противоречит законам электродинамики и не объясняет линейчатого характера атомного спектра.

Модель Бора

В 1913 г. Н. Бор предложил свою теорию строения атома, не отрицая при этом полностью предыдущие представления. В основу своей теории Бор положил два постулата.

Первый постулат говорит о том, что электрон может вращаться вокруг ядра только по определенным стационарным орбитам. Находясь на них, он не излучает и не поглощает энергию. При движении по любой стационарной орбите запас энергии электрона (Е1, Е2 …) остается постоянным. Чем ближе к ядру расположена орбита, тем меньше запас энергии электрона Е1 ˂ Е2 …˂ Еn .

Энергия электрона на орбитах определяется уравнением:

где m – масса электрона, h – постоянная Планка, n – 1, 2, 3… (n=1 для 1-ой орбиты, n=2 для 2-ой и т.д.).

Второй постулат говорит о том, что при переходе с одной орбиты на другую электрон поглощает или выделяет квант (порцию) энергии.

Если подвергнуть атомы воздействию (нагреванию, облучению и др.), то электрон может поглотить квант энергии и перейти на более удаленную от ядра орбиту.

В этом случае говорят о возбужденном состоянии атома. При обратом переходе электрона (на более близкую к ядру орбиту) энергия выделяется в виде кванта лучистой энергии – фотона.

В спектре это фиксируется определенной линией. На основании формулы

,

Важно

где λ – длина волны, n = квантовые числа, характеризующие ближнюю и дальнюю орбиты, Бор рассчитал длины волн для всех серий в спектре атома водорода. Полученные результаты соответствовали экспериментальным данным.

Стало ясным происхождение прерывистых линейчатых спектров. Они – результат излучения энергии атомами при переходе электронов из возбужденного состояния в стационарное.

Переходы электронов на 1-ю орбиту образуют группу частот серии Лаймана, на 2-ю – серию Бальмера, на 3-ю серию Пашена (табл. 1).

Таблица 1

Проверка формулы Бора для серий водородного спектра

Название серии λ, А Экспериментальная λ, А Вычисленная Бором
Пашена 18751,3 12817,5 10938,0 10049,8
Бальмера 6564,66 4862,71 4102,91 3971,20 3799,00 3712,70 6564,70 4862,80 4341,70 4102,93 3971,23 3799,01 3712,62  
Лаймана 1215,68 1025,73 972,5

Однако, теория Бора не смогла объяснить расщепление линий в спектрах многоэлектронных атомов. Бор исходил из того, что электрон – это частица, и использовал для описания электрона законы, характерные для частиц. Вместе с тем накапливались факты, свидетельствующие о том, что электрон способен проявлять и волновые свойства.

Классическая механика оказалась не в состоянии объяснить движение микрообъектов, обладающих одновременно свойствами материальных частиц и свойствами волны. Эту задачу позволила решить квантовая механика – физическая теория, исследующая общие закономерности движения и взаимодействия микрочастиц, обладающих очень малой массой (табл.

2).

Таблица 2

Свойства элементарных частиц, образующих атом

  Частица Заряд Масса
Кл Условн.ед. г А.е.м.
Электрон – 1,6·10-19 -1 9,10·10-28 0,00055
Протон 1,6·10-19 +1 1,67·10-24 1,00728
Нейтрон 1,67·10-24 1,00866

Квантово-механическая модель строения атома

В основе современной теории строения атома лежат следующие основные положения:

1. ЭЛЕКТРОН ИМЕЕТ ДВОЙСТВЕНУЮ (корпускулярно-волновую) ПРИРОДУ.

Электрон, как и другие элементарные частицы (протон, нейтрон), обладает определенной массой и зарядом, т.е. ведет себя как частица.

В то же время, движущийся электрон проявляет волновые свойства, например характеризуется способностью к дифракции (рассеяние световых лучей) и интерференции (наложение световых волн).

Для любой элементарной частицы справедливо уравнение (Луи де Бройль), связывающее параметры волны и частицы

,

где λ – длина волны электрона, h – постоянная Планка, m – масса электрона,

υ – скорость движения электрона.

2. ДЛЯ ЭЛЕКТРОНА НЕВОЗМОЖНО ОДНОВРЕМЕННО ТОЧНО ИЗМЕРИТЬ КООРДИНАТУ И СКОРОСТЬ.

В силу наличия у микрочастиц волновых свойств невозможно в каждый момент времени точно фиксировать их положение в пространстве и определять

с любой точностью скорость их движения. Чем точнее мы измеряем один параметр, тем больше неопределенность в другом. Принцип неопределенности сформулирован Гейзенбергом (1927 г.) и имеет математическое выражение

,

где Δх – неопределенность положения частицы по оси х, ΔРх = Δ(m·υ) – неопределенность составляющей импульса по оси х.

Из формулы видно, что чем меньше значение Δх , т.е. чем определеннее положение частицы, тем больше ΔРх, т.е. тем неопределеннее ее импульс.

Неопределенность в свойствах микрообъектов проявляется тем в большей степени, чем в большей степени выражена его волновая функция (чем меньше его масса).

Поэтому неопределенность в положении электрона значительно больше, чем неопределенность в положении ядра атома.

2. ЭЛЕКТРОН В АТОМЕ НЕ ДВИЖЕТСЯ ПО ОПРЕДЕЛЕННЫМ

ТРАЕКТОРИЯМ, А МОЖЕТ НАХОДИТСЯ В ЛЮБОЙ ЧАСТИ ОКОЛОЯДЕРНОГО ПРОСТРАНСТВА, однако вероятность его нахождения в разных частях этого пространства неодинакова.

Совет

Вероятность нахождения электрона в разных местах околоядерного пространства можно определить с помощью уравнения Шредингера

,

где h – постоянная Планка, m – масса электрона, U – потенциальная энергия,

Е – полная энергия, ψ – волновая (пси) функция. Первый член уравнения

соответствует кинетической энергии частицы (Ек) с массой m. При короткой записи Ек описывается оператором Лапласа

где- оператор Лапласа.

Упрощенный вид уравнения Шредингера

.

Решение этого уравнения связано с большими математическими трудностями. Точное решение оно имеет для атома водорода и для одноэлектронных частиц. Для сложных атомов уравнение Шредингера может быть решено только приблизительно.

Решая его находят энергию электрона, а также функцию координат электрона X, Y, Z и времени τ:. Волновая функция ψ представляет собой амплитуду трехмерной электронной волны. Причем она имеет как положительные, так и отрицательные значения.

Квадрат модуля волновой функциихарактеризует вероятность нахождения электрона в некотором объеме. Эту величину называют также электронной плотностью.

Если в соответствии с Ур авнением Шредингера получим, что, где- определенный объем, то это значит, что в данном объеме электрон находится 0,1 времени, а 0,9 – в другом месте, т.е. можно утверждать, что электронная плотность в данном объеме равна 0,1. Совокупность мест пространства, гдеимеет максимальное значение называют электронной орбиталью.

Таким образом, электронной орбиталью или электронным облаком называется часть околоядерного пространства, в котором вероятность пребывания электрона максимальна.

Поверхность, охватывающая ядро атома, за пределами которой вероятность пребывания электрона исчезающее мала, называют граничной поверхностью орбитали, которая и передает форму самой орбитали.

4. ЯДРА АТОМОВ СОСТОЯТ ИЗ ПРОТОНОВ И НЕЙТРОНОВ

(общее название – нуклоны).

Обратите внимание

Число протонов в ядре равно порядковому номеру элемента в таблице Д.И. Менделеева, а сумма протонов и нейтронов его атомному числу. Массовое число (А), заряд ядра (Z), равный числу протонов, и число нейтронов (N)

связаны соотношениями: Z = А – N, N = А – Z, А = Z + N.

Атомы с одинаковыми Z, но разными А и N, называют изотопами.

Квантовые числа

Решение уравнения Шредингера позволяет найти волновые функции, при этом выяснено, что для полного определения каждого решения необходимы три целых числа – квантовые числа. Можно сказать, что квантовые числа описывают совокупность движений электронов в атоме.

ГЛАВНОЕ КВАНТОВОЕ ЧИСЛО (n) определяет общую энергию электрона на данной орбитали и принимает значения n = 1, 2, 3, 4….

Чем больше n, тем больше объем внутреннего пространства атомной орбитали, т.е. растет удаленность электрона от ядра атома. Все электроны с одинаковым значением главного квантового числа образуют электронный слой. Приняты следующие обозначения электронных слоев:

Значение n ……………………………. 1 2 3 4 5 6 7

Обозначение слоя (уровня) ………….. K L M N O P Q.

Зная главное квантовое число можно определить максимальное число электронов, которое может находиться на этом уровне по формуле Nе = 2n2.

Возможное число подуровней для каждого электронного уровня численно равно значению n– первый уровень (n = 1) состоит из одного подуровня, второй уровень (n = 2) – из двух и т.д. (табл.3).

ОРБИТАЛЬНОЕ КВАНТОВОЕ ЧИСЛО (), которое иногда называют побочным квантовым числом, определяет форму электронного облака и принимает значения от нуля до n-1. Область электронного уровня, в котором содержатся орбитали определенной формы называется энергетическим подуровнем. Подуровень, содержащий s-орбитали, называется s-подуровнем,

р-орбитали – р-подуровнем и т.д. Например, при n = 1,= 0 (на первом уровне существуют только s-электроны). При n = 3,= 0, 1, 2 (на третьем уровне содержит 3s-, 3р- и 3d-электроны).

Таблица 3

Максимальное число подуровней и орбиталей на энергетических уровнях

Энергетический уровень Число подуровней Типы орбиталей Орбитали,
К (n = 1) 1s
L (n = 2) 2s 2p -1, 0, +1
M (n = 3) 3s 3p 3d -1, 0, +1 -2, -1, 0, +1, +2
N (n = 4) 4s 4p 4d 4f -1, 0, +1 -2, -1, 0, +1, +2 -3, -2, -1, 0, +1, +2, +3

Если= 0, электронное облако имеет сферическую форму;

= 1 – электронное облако имеет форму симметричной восьмерки (гантель).

С ростом численного значения орбитального квантового числа форма электронного облака усложняется.

МАГНИТНОЕ КВАНТОВОЕ ЧИСЛОхарактеризует ориентацию данной орбитали в пространстве. Магнитное квантовое число принимает целочисленные значения от -до +, включая ноль. Например, для= 2, магнитные квантовые числа имеют значения -2, -1, 0, +1, +2, т.е. в данной подоболочке (d-подуровень) существует пять орбиталей. Соответственно на

s-подуровне (= 0) имеется одна орбиталь; на р-подуровне (= 1) – три орбитали; на f-подуровне – семь орбиталей. Атомную орбиталь обозначают в виде клеточки □. Тогда число орбиталей на соответствующих подуровнях будет равно: s-подуровень – □; р-подуровнь – □□□; d-подуровень – □□□□□;

f-подуровнь – □□□□□□□.

Вышерассмотренные квантовые числа полностью характеризуют три определяющих свойства электрона-волны: длину, направление и амплитуду. Однако у электрона-частицы имеется особое свойство, называемое спином. Упрощенно спин можно рассматривать как вращение электрона вокруг собственной оси. Поэтому в теорию строения атома введено еще одно

Важно

СПИНОВОЕ КВАНТОВОЕ ЧИСЛО (ms), которое может принимать два значения в соответствии с двумя возможными направлениями вращения:

ms = + ½ (электрон вращается по часовой стрелке вокруг своей оси и имеет обозначение), ms = – ½ (электрон вращается против часовой стрелки вокруг своей оси и имеет обозначение).

Многоэлектронные атомы

В многоэлектронном атоме на электрон действует не только сила притяжения со стороны положительного заряженного ядра, но и отталкивание со стороны других электронов.

Электроны внутренних электронных уровней атома ослабляют притяжение внешнего электрона ядром – экранируют внешний электрон от ядра. Это экранирование оказывается различным для электронов с разной формой электронного облака.

Поэтому в многоэлектронных атомах энергия электрона зависит не только от главного квантового числа, но и от орбитального квантового числа, которое определяет форму электронной орбитали.

Распределение электронов в атоме по уровням и орбиталям происходит в соответствии с принципами Паули, Хунда, наименьших энергий.

Принцип Паули

Принцип (запрет) Паули гласит: в атоме не может быть двух электронов, имеющих одинаковыезначения всех четырех квантовых чисел. Отсюда следует, что на каждой орбитали может быть не более двух электронов, причем они должны иметь антипараллельные спины.

Правило Гунда

В соответствии с этим правилом заполнение орбиталей данного подуровня происходит таким образом, чтобы достигалось максимальное значение суммарного спинового числа (∑ms).

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s34296t2.html

Строение атома. Опыты Резерфорда – Класс!ная физика

«Физика – 11 класс»

Открытие сложного строения атома — важнейший этап становления современной физики, наложивший отпечаток на все ее дальнейшее развитие.
В процессе создания количественной теории строения атома, позволившей объяснить атомные спектры, были открыты новые законы движения микрочастиц — законы квантовой механики.

Модель Томсона

Первая модель атома была предложена английским физиком Дж. Дж. Томсоном, открывшим электрон. По мысли Томсона, положительный заряд атома занимает весь объем атома и распределен в этом объеме с постоянной плотностью.

Простейший атом (атом водорода) представляет собой положительно заряженный шар радиусом около 10-8 см, внутри которого находится электрон.

У более сложных атомов в положительно заряженном шаре находится несколько электронов, так что атом подобен кексу, в котором роль изюминок выполняют электроны.

Совет

Однако модель атома Томсона оказалась в полном противоречии с известными уже к тому времени свойствами атома, главным из которых является устойчивость.

Опыты Резерфорда

Масса электронов в несколько тысяч раз меньше массы атомов.
Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд предложил в 1906 г. применить зондирование атома с помощью α-частиц.

Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона.

Это не что иное, как полностью ионизированные атомы гелия.

Скорость α-частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов.
Электроны вследствие своей малой массы не могут заметно изменить траекторию а-частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не может значительно изменить его скорость.

Рассеяние (изменение направления движения) α-частиц может вызвать только положительно заряженная часть атома.
Таким образом, по рассеянию α-частиц можно определить характер распределения положительного заряда и массы внутри атома.

Схема опытов Резерфорда:

Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра 1, вдоль которого был высверлен узкий канал. Пучок -частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.).

После рассеяния α-частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4.

Весь прибор размещался в сосуде, из которого был откачан воздух.

Обратите внимание

При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком α-частиц.
Но когда на пути пучка помещали фольгу, α-частицы из-за рассеяния распределялись на экране по кружку большей площади.

Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α-частиц на большие углы. Для этого он окружил фольгу сцинтилляциоными экранами и определил число вспышек на каждом экране. Совершенно неожиданно оказалось, что небольшое число α-частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°.

Позднее Резерфорд признался, что, предложив своим ученикам провести эксперимент по наблюдению за рассеянием α-частиц на большие углы, он сам не верил в положительный результат.

В самом деле, предвидеть этот результат на основе модели Томсона было нельзя. При распределении по всему атому положительный заряд не может создать достаточно сильное электрическое поле, способное отбросить α-частицу назад.

Максимальная сила отталкивания может быть определена по закону Кулона:

где
— заряд α-частицы;
q – положительный заряд атома;
R — его радиус;
k — коэффициент пропорциональности.

Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру.
Поэтому чем меньше радиус R, тем больше сила, отталкивающая α-частицы.

Определение размеров атомного ядра

Резерфорд понял, что α-частица могла быть отброшена назад лишь в том случае, если положительный заряд атома и его масса сконцентрированы в очень малой области пространства.
Так Резерфорд пришел к мысли о существовании атомного ядра — тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.

На рисунке показаны траектории α-частиц, пролетающих на различных расстояниях от ядра.

Важно

Подсчитывая число α-частиц, рассеянных на различные углы, Резерфорд смог оценить размеры ядра.
Оказалось, что ядро имеет диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны).
Размер же самого атома 10-8 см, т. е. в 10—100 тысяч раз превышает размеры ядра. Впоследствии удалось определить и заряд ядра.

При условии, что заряд электрона принят за единицу, заряд ядра в точности равен номеру данного химического элемента в периодической системе Д. И. Менделеева.

Планетарная модель атома

На основе своих опытов Резерфорд создал планетарную модель атома. В центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален.

Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро.

Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца.

Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.

В атоме водорода вокруг ядра обращается всего лишь один электрон. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза бо́льшую массы электрона.

Это ядро было названо протоном и стало рассматриваться как элементарная частица.

Размер атома водорода — это радиус орбиты его электрона.

Простая и наглядная планетарная модель атома имеет прямое экспериментальное обоснование. Она кажется совершенно необходимой для объяснения опытов по рассеиванию α-частиц. Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость. Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым.

Совет

Ускоренно движущийся заряд по законам электродинамики Максвелла должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Излучение сопровождается потерей энергии. Теряя энергию, электроны должны приближаться к ядру, подобно тому как спутник приближается к Земле при торможении в верхних слоях атмосферы.

Как показывают расчеты, основанные на механике Ньютона и электродинамике Максвелла, электрон за ничтожно малое время (порядка 10-8 с) должен упасть на ядро.

Атом должен прекратить свое существование.

В действительности ничего подобного не происходит.

Атомы устойчивы и в невозбужденном состоянии могут существовать неограниченно долго, совершенно не излучая электромагнитные волны.

Не согласующийся с опытом вывод о неизбежной гибели атома вследствие потери энергии на излучение — это результат применения законов классической физики к явлениям, происходящим внутри атома.
Отсюда следует, что к таким явлениям законы классической физики неприменимы.

Резерфорд создал планетарную модель атома: электроны обращаются вокруг ядра, подобно тому как планеты обращаются вокруг Солнца.
Эта модель проста, обоснована экспериментально, но не позволяет объяснить устойчивость атома.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Атомная физика. Физика, учебник для 11 класса – Класс!ная физика

Строение атома. Опыты Резерфорда — Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика — Лазеры — Краткие итоги главы

Источник: http://class-fizika.ru/11_68.html

Современные представления о строении атома

4. Повторение

Слайд 1  Вопрос о том, как устроен мир, является одним из тех, которые причисляются к разряду вечных.

 Открывая законы природы, спрятанные под покровом бесконечно многообразного мира явлений, человек научил­ся применять их для своих целей, создавать то, чего никогда не было в самой природе.

Было изобретено радио, по­строены громадные электрические машины, освобождена внутриядерная энергия; человек вышел в космическое про­странство. Много веков длится процесс познания окружающего мира.

Слайд 2  Какими же путями добывается науч­ная истина? Сегодня мы это и узнаем. Тема нашего урока: «Строение атома»

Слайд 3 В физике много разделов, и каждый изучает свои явления. Раздел физики, в котором изучают строение и состояние атомов, называется атомная физика. А. ф. возникла в конце 19 – начале 20 вв.

Предыстория атомной физики

Слайды 4-7  Мысль о существовании атомов как неделимых частиц материи возникла ещё в древности; идеи атомизма впервые были высказаны древнегреческими мыслителями Демокритом и Эпикуром.

Слайд 8 В XVII-XVII веках вопросом о строении атома занимались Бойль, Ньютон, Ломоносов. Представления об атомах, господствовавшие в XVII-XVII вв., были малоопределёнными. Атомы считались абсолютно неделимыми и неизменными твёрдыми частицами, различные виды которых отличаются друг от друга по размеру и форме.

Возникновение атомной физики

Слайд 9 Важнейшими событиями в науке, от которых берёт начало А. ф., были открытия электрона и радиоактивности.

Слайд 10 При исследовании прохождения электрического тока через сильно разреженные газы были открыты лучи, испускаемые катодом разрядной трубки (катодные лучи) и обладающие свойством отклоняться в поперечном электрическом и магнитном полях.

Выяснилось, что эти лучи состоят из быстро летящих отрицательно заряженных частиц, названных электронами. Из этого было сделано заключение, что электроны входят в состав любых атомов.

Обратите внимание

Отсюда далее следовало, что нейтральные атомы должны также содержать и положительно заряженные частицы.

Слайд 11 30 апреля 1897 английский физик Джозеф Джон  Томсон на заседании Королевского общества сделал доклад, где говорилось об открытии электрона.

Слайды 12-13 Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Томсоном в 1903 году, атом представлялся в виде положительно заряженной сферы, в которую вкраплены незначительные по размеру (по сравнению с атомом) отрицательные электроны.

Слайд 14 В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбиталям вращались электроны, объединённые в кольца.

Создание Резерфордом планетарной модели атома.

Слайды 15-18  Модель атома Томсона оказалась неудовлетворительной. На её основе не удалось объяснить совершенно неожиданный результат опытов английского физика Э. Резерфорда и его сотрудников Х. Гейгера и Э. Марсдена по рассеянию a-частиц атомами. В этих опытах быстрые a-частицы были применены для прямого зондирования атомов.

Проходя через вещество, a-частицы сталкиваются с атомами. При каждом столкновении a-частица, пролетая через электрическое поле атома, изменяет направление движения — испытывает рассеяние. В подавляющем большинстве актов рассеяния отклонения a-частиц (углы рассеяния) были очень малы.

Поэтому при прохождении пучка a-частиц через тонкий слой вещества происходило лишь небольшое размытие пучка. Однако очень малая доля a-частиц отклонялась на углы более 90°(1 из 2 000). Этот результат нельзя было объяснить на основе модели Томсона, т.к.

 электрическое поле в “сплошном” атоме недостаточно сильно, чтобы отклонить быструю и массивную a-частицу на большой угол. Чтобы объяснить результаты опытов по рассеянию a-частиц, Резерфорд предложил принципиально новую модель атома, напоминающую по строению Солнечную систему и получившую название планетарной. Она имеет следующий вид.

В центре атома находится положительно заряженное ядро, размеры которого (~10–12см) очень малы по сравнению с размерами атома (~10–8 см), а масса почти  равна массе атома.

Вокруг ядра движутся электроны, подобно планетам вокруг Солнца; число электронов в незаряженном (нейтральном) атоме таково, что их суммарный отрицательный заряд компенсирует (нейтрализует) положительный заряд ядра. Электроны должны двигаться вокруг ядра, в противном случае они упали бы на него под действием сил притяжения.

Различие между атомом и планетной системой состоит в том, что в последней действуют силы тяготения, а в атоме — электрические (кулоновские) силы. Вблизи ядра, которое можно рассматривать как точечный положительный заряд, существует очень сильное электрическое поле.

Поэтому, пролетая вблизи ядра, положительно заряженные a-частицы (ядра гелия) испытывают сильное отклонение.  Однако планетарная модель атома натолкнулась на принципиальные трудности. Согласно классической электродинамике, заряженная частица, движущаяся с ускорением, непрерывно излучает электромагнитную энергию. Поэтому электроны, двигаясь вокруг ядра, т. е. ускоренно, должны были бы непрерывно терять энергию на излучение. Но при этом они за ничтожную долю секунды потеряли бы всю свою кинетическую энергию и упали бы на ядро.

Слайд 19 Физкультминутка

Слайды 20-28 Противоречия модели Резерфорда оказалось возможным разрешить, лишь отказавшись от ряда привычных представлений классической физики. Важнейший шаг в построении теории атома был сделан датским физиком Н. Бором (1913).

Постулаты Бора и модель атома Бора

Важно

В основу квантовой теории атома Бор положил 2 постулата, характеризующих те свойства атома, которые не укладывались в рамки классической физики. Эти постулаты Бора могут быть сформулированы следующим образом:

1 постулат: атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.

2 постулат: при переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний:

hv = En – Em,  где h – постоянная Планка.

При испускании или поглощении света изменяется энергия атома, это изменение равно энергии испущенного или поглощённого фотона, т. е. имеет место закон сохранения энергии.

Дальнейшее развитие А. ф. показало справедливость постулатов Бора не только для атомов, но и для других микроскопических систем — для молекул и для атомных ядер. Эти постулаты следует рассматривать как твёрдо установленные опытные квантовые законы.

Они составляют ту часть теории Бора, которая не только сохранилась при дальнейшем развитии квантовой теории, но и получила своё обоснование. Иначе обстоит дело с моделью атома Бора, основанной на рассмотрении движения электронов в атоме по законам классической механики при наложении дополнительных условий квантования.

Такой подход позволил получить целый ряд важных результатов, но был непоследовательным: квантовые постулаты были присоединены к законам классической механики искусственно.

Последовательной теорией явилась созданная в 20-х гг. 20 в. квантовая механика. Её создание было подготовлено дальнейшим развитием модельных представлений теории Бора, в ходе которого выяснились её сильные и слабые стороны.

Развитие модельной теории атома Бора

Однако далеко не все вопросы теории атома удалось объяснить на основе модельных представлений теории Бора. При переходе к объяснению движений электронов в атомах, более сложных, чем атом водорода, модельная теория Бора оказалась в тупике.

Уже атом гелия, в котором вокруг ядра движутся 2 электрона, не поддавался теоретической интерпретации на её основе. Трудности при этом не исчерпывались количественными расхождениями с опытом.

Совет

Теория оказалась бессильной и в решении такой проблемы, как соединение атомов в молекулу.

Квантовомеханическая теория атома

Слайд 29 Ограниченность боровской модели атома коренилась в ограниченности классических представлений о движении микрочастиц. Стало ясно, что для дальнейшего развития теории атома необходимо критически пересмотреть основные представления о движении и взаимодействии микрочастиц.

Неудовлетворительность модели, основанной на классической механике с добавлением условий квантования, отчётливо понимал и сам Бор, взгляды которого оказали большое влияние на дальнейшее развитие А. ф. Началом нового этапа развития А. ф. послужила идея, высказанная французским физиком Л.

де Бройлем (1923) о двойственной природе движения микрообъектов, в частности электрона. Эта идея стала исходным пунктом квантовой механики, созданной в 1925-26 трудами В. Гейзенберга и М. Борна (Германия), Э. Шрёдингера (Австрия) и П.

Дирака (Англия), и разработанной на её основе современной квантовомеханической теории атома.

Представления квантовой механики о движении электрона (вообще микрочастицы) коренным образом отличаются от классических. Согласно квантовой механике, электрон не движется по траектории (орбите), подобно твёрдому шарику; движению электрона присущи также и некоторые особенности, характерные для распространения волн.

С одной стороны, электрон всегда действует (например, при столкновениях) как единое целое, как частица, обладающая неделимым зарядом и массой; в то же время электроны с определённой энергией и импульсом распространяются подобно плоской волне, обладающей определённой частотой (и определённой длиной волны).

Энергия электрона Е как частицы связана с частотой v электронной волны соотношением: E = hv, а его импульс р — с длиной волны λ соотношением: р = h'λ.

На основе квантовой механики удалось путём решения уравнения Шрёдингера правильно рассчитать энергии электронов в сложных атомах.

Современная атомная физика

Обратите внимание

Важнейшая задача А. ф. — детальное определение всех характеристик состояний атома. Речь идёт об определении возможных значений энергии атома — его уровней энергии, значений моментов количества движения и других величин, характеризующих состояния атома.

Исследуются тонкая и сверхтонкая структуры уровней энергии, изменения уровней энергии под действием электрических и магнитного полей — как внешних, макроскопических, так и внутренних, микроскопических. Большое значение имеет такая характеристика состояний атома, как время жизни электрона на уровне энергии.

Наконец, большое внимание уделяется механизму возбуждения атомных спектров.

Двойственная природа электрона

Подтвержденная экспериментально в 1927 г. двойственная природа электрона, обладающего свойствами не только частицы, но и волны, побудила ученых к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику.

  Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определенную массу покоя), а с другой – его движение напоминает волну и может быть описано определенной амплитудой, длиной волны, частотой колебаний и др.

Поэтому нельзя говорить о какой-либо определенной траектории движения электрона – можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.

  Следовательно, под электронной орбитой следует понимать не определенную линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами, электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определенном расстоянии от ядра.

20

Источник: https://multiurok.ru/files/sovriemiennyie-priedstavlieniia-o-stroienii-atoma.html

Строение атома и все что с этим связано

Содержание:

  • История строения атома
  • Модели строения атома
  • Периодический закон Менделеева и строение атомов
  • Электронная оболочка атомов
  • Формула строения атома
  • Современная модель строения атома
  • Строение атома, видео
  • Еще с давних времен мыслители, философы и первые ученые мужи предполагали, что все сущее, материя, воздух, вода, все состоит из неких мельчайших частиц — атомов.

    Основоположником атомарной теории строения мира был древнегреческий философ и ученый Демокрит, хотя, скорее всего не он был первым автором этой идеи – Демокрит много путешествовал по тогдашней ойкумене и учение о строении атомов мог перенять у халдейских и/или египетских жрецов, по совместительству блестящих ученых древнего мира.

    Согласно учению Демокрита даже человеческая душа состоит из атомов. Он также объяснял многие особенности разных веществ, например, огонь, согласно Демокриту, потому печет, что атомы из которых он состоит острые, а твердые тела именно потому твердые, что атомы из которых они состоят крепко сцеплены между собой.

    Важно

    Учение Демокрита вызвало многие споры среди античных философов (в целом охочих к этому занятию), в частности частым предметом дискуссий и рассуждений был вопрос о делимости/неделимости атома и если атом таки делится, рассуждали философы, то делятся ли в свою очередь его мельчайшие частицы, и до каких пор происходит это деление? Некоторые же мудрецы считали атом мельчайшей неделимой частицей, ведь само название этого слова «atomos» на древнегреческом означало «неделимый».

    Правда античные мудрецы дальше теоретических дискуссий так и не зашли, затем на смену античности пришло мрачное средневековье и стало не до атомов.

    Новый интерес к атомам, основным сведениям об их строении уже возник в XIX веке, времени нового расцвета науки и техники.

    Так уже с практическими опытами ученым стало понятно, что атом не является неделимым, а в 1860 году было сформулировано академическое понятие атома и молекулы.

    XX век стал подлинным временем прорыва наших знаний об атоме, в том числе блестящие ученые физики Нильс Бор и Эрнест Резерфорд предложили так званую планетарную модель атома, сравнив его с планетной системой, где подобно тому как планеты вращаются вокруг Солнца, электроны в атоме вращаются вокруг атомного ядра, состоящего из протонов и нейтронов. Любопытно, что подобные рассуждения перекликаются с представлениями древних, ведь еще легендарный Гермес Трисмегист говорил «что вверху, то внизу», или другими словами строение планетных систем и галактик подобно строению мельчайшей частицы – атома.

    Помимо модели Бора/Резерфорда были и другие, например, модель Томпсона, полагавшего, что атом является положительно заряженным телом, внутри которого располагаются электроны. Эту модель опроверг Резерфорд.

    Также стоит отметить планетарную модель атома Нагаоки, предполагавшего, что строение атома подобно планете Сатурн, у которого вокруг ядра вращаются объединенные в кольца электроны.

    Совет

    Закономерным развитием общепризнанной планетарной модели Бора/Резерфорда стала квантовая модель строения атома, утверждающая, что в ядре атома находятся не имеющие заряда нейтроны, положительно заряженные протоны, а вокруг летают отрицательно заряженные электроны. При этом траектории движения электронов согласно законам квантовой механики наперед не заданы.

    Разумеется, все модели строение атомы являются весьма упрощенными вариантами, подлинное строение атома куда более сложное.

    Строение и свойства атомов различных химических элементов прямо связаны с местом последних в знаменитой таблице Менделеева. Там они расположены согласно электрическим зарядам своих ядер, зависящего от количества протонов (как помним заряженных положительно) и электронов, летающих вокруг ядра и заряженных отрицательно.

    Электронная оболочка атомов имеет ровно столько электронов, сколько есть в его ядре протонов, именно благодаря этому атом является нейтрально заряженным – количество положительно и отрицательно заряженных частиц уравнивают друг друга.

    Наряду с появлением планетарной теории строения атома появились и формулы, описывающие это самое строение для атомов разных химических элементов. Например, формулу строения атома азота можно описать как — 1s22s22p3, строение атома натрия — 1s22s22p63s1. Эти формулы показывают, какое количество электронов движется по каждой из орбит того или иного химического элемента.

    В наше время физика не стоит на месте и с момент создания канонической планетарной модели атома Бора/Резерфорда было сделано много интересных открытий относительно устройства атома.

    Так, например, мы уже знаем что протоны, из которых состоит атомное ядро, сами в свою очередь состоят из еще более мелких элементарных частиц – кварков.

    Но кварки, также далеко не самые мелкие частицы, меньше их открытые загадочные нейтрино, о которых на нашем сайте есть интересная статья.

    И в завершение познавательное видео про электронное строение атома и атомного ядра.

    Источник: http://www.poznavayka.org/fizika/stroenie-atoma-i-vse-chto-s-etim-svyazano/

    Ссылка на основную публикацию