Первые электронные приборы: история развития, основные направления, основы теории электронных ламп

Электроника для “чайников”: как работает радиолампа и зачем она нужна

Сейчас мы привыкли к компактным электронным устройствам и сверхтонким ноутбукам. А чуть больше ста лет назад появился девайс, который сделал это реальностью и произвел настоящую революцию в развитии электроники. Речь идет о радиолампе.

Ламповое вступление

В схемотехнике раньше повсеместно использовались лампы, первые электронные приборы были построены именно с их использованием. Золотое время радиоламп пришлось на первую половину 20 века. Для наших дедов и прадедов гораздо привычнее были гигантские ЭВМ, занимавшие целое помещение и греющиеся как адское пекло. На такой машине сериальчик не посмотришь.

Потом еще было время, когда советские микросхемы стали самыми большими в мире. Но это уже другая история, которая началась после появления полупроводниковых приборов. Как вы поняли, эта статья о работе электронной лампы и ее современном использовании.

Читайте также про то, что такое транзистор и как он работает.

Вакуумные приборы

Вакуум – это отсутствие материи. Точнее, практически полное ее отсутствие. В физике разделяют высокий, средний и низкий вакуум. Понятно, что электрического тока в вакууме быть не может, так как ток – это направленное движение (частиц) носителей заряда, которым в вакууме взяться неоткуда.

Но так уж и неоткуда? Металлы при нагревании испускают электроны. Это так называемая термоэлектронная эмиссия. На ней и основана работа электронных вакуумных приборов.

Термоэлектронную эмиссию открыл Томас Эдисон. Точнее ученый выяснил, что при нагреве нити и наличия в вакуумной колбе второго электрода вакуум проводит ток. Тогда Эдисон не в полной мере оценил значение своего открытия, но на всякий случай запатентовал его. Вывод: в любой непонятной ситуации патентуйте!

Обратите внимание

Вакуумные приборы – герметично запаянные баллоны с электродами внутри. Баллоны делают из стекла, металла или керамики, предварительно откачав из них воздух.

Помимо электронных ламп есть следующие вакуумные приборы:

  • приборы СВЧ, магнетроны, клистроны;
  • кинескопы, электронно-лучевые трубки;
  • рентгеновские трубки.

Принцип работы электронной лампы

Электронная лампа – это электронный вакуумный прибор, который работает за счет управления интенсивностью потока электронов между электродами.

Простейший тип лампы – диод. Вместо того чтобы читать определения, лучше посмотрим на нее.

Диод

В любой лампе есть катод, с которого электроны вылетают, и анод, на который они летят. Если на катод подать «минус», а на анод «плюс», электроны, вылетевшие из раскаленного катода, начнут двигаться к аноду. В лампе потечет ток.

Кстати! Если вам нужно произвести расчет усилителя на диодах, для наших читателей сейчас действует скидка 10% на любой вид работы

Диод обладает односторонней проводимостью. Это значит, что если на катод подать плюс, а на анод минус, тока в цепи уже не будет.

Помимо этих двух электродов в лампах могут быть и другие.

Все названия электронных ламп связаны с количеством электродов. Диод – два, триод – три, тетрод – четыре, пентод – пять и т.д.

Возьмем триод. Это диод, в который добавлен дополнительный электрод – управляющая сетка. Такая лампа с тремя электродами уже может работать как усилитель тока.

Если на сетке есть небольшое отрицательное напряжение, она будет задерживать часть электронов, летящих к аноду, и ток уменьшится. При большом отрицательном напряжении сетка «запрет» лампу, и ток в ней прекратится. А если подать на сетку положительное напряжение, анодный ток будет усиливаться.

Триод

Небольшое изменение напряжения на сетке, которая устанавливается рядом с катодом, существенно влияет на ток между катодом и анодом. На этом и строится принцип усиления.

Применение электронных ламп

Почти везде лампу вытеснил полупроводниковый транзистор. Однако в некоторых отраслях лампы заняли свое место и остаются незаменимыми.

Например, в космосе. Ламповое оборудование выдерживает больший диапазон температур и радиационный фон, поэтому используется в производстве космических аппаратов.

Важно

Лампы с воздушным или водяным охлаждением также находят применение в мощных радиопередатчиках.

Конечно, сложно представить современное музыкальное оборудование без ламповых схем.

Ламповый звук: правда или вымысел?

Усилители низкой частоты или просто усилители звука – самое известное современное применение радиоламп, которое к тому же вызывает много споров.

Доходит вплоть до «холиваров» между адептами лампового и транзисторного звука. Ламповый звук, как говорят, более «душевный» и «мягкий», его приятно слушать. В то время как транзисторный звук – «бездушный» и «холодный».

Чтобы дальше лучше понимать то, о чем тут написано, мы рекомендуем прочесть тематическую статью про звуки и их влияние на наши мозги.

Разогретые лампы УНЧ

Ничего не бывает просто так, и вряд ли такие споры и мнения возникали на пустом месте. В свое время вопросом, действительно ли ламповый звук приятнее для слуха, заинтересовались ученые. Было проведено довольно много исследований на тему отличий лампы от транзистора.

По данным одного из них, ламповые усилители добавляют в сигнал четные гармоники, которые субъективно воспринимаются людьми как «теплые», «приятные» и «уютные».  Правда, сколько людей, столько и мнений, поэтому споры до сих пор ведутся.

Часто спор – пустая трата времени. А вот студенческий сервис, наоборот, поможет сохранить ценные человеко-часы. Обращайтесь к нашим специалистам за качественной помощью в любой области знаний.

Источник: https://Zaochnik.ru/blog/elektronika-dlya-chajnikov-kak-rabotaet-radiolampa-i-zachem-ona-nuzhna/

Электронная лампа (история изобретения)

Изобретатель: Джон Флеминг
Страна: Великобритания
Время изобретения: 1905 г.

Изобретение электронной лампы напрямую связано с развитием техники освещения. В начале 80-х годов XIX века знаменитый американский изобретатель Томас Эдисон занимался усовершенствованием лампы накаливания. Одним из ее недостатков было постепенное уменьшение световой отдачи из-за потускнения баллона вследствие появления темного пятна на внутренней стороне стекла.

Исследуя в 1883 году причины этого эффекта, Эдисон заметил, что часто на потускневшем стекле баллона в плоскости петли нити оставалась светлая, почти незатемненная полоса, причем эта полоса всегда оказывалась с той стороны лампы, где находился положительный ввод накальной цепи.

  Дело выглядело так, будто часть угольной нити накала, примыкающая к отрицательному вводу, испускала из себя мельчайшие материальные частицы.

Пролетая мимо положительной стороны нити, они покрывали внутреннюю сторону стеклянного баллона всюду, за исключением той линии на поверхности стекла, которая как бы заслонялась положительной стороной нити.

Картина этого явления стала более очевидна, когда Эдисон ввел внутрь стеклянного баллона небольшую металлическую пластину, расположив ее между вводами нити накала. Соединив эту пластинку через гальванометр с положительным электродом нити, можно было наблюдать текущий через пространство внутри баллона электрический ток.

Эдисон предположил, что поток угольных частичек, испускаемых отрицательной стороной нити, делает часть пути между нитью и введенной им пластинкой проводящим, и установил, что поток этот пропорционален степени накала нити, или, другими словами, световой мощи самой лампы.

На этом, собственно, и заканчивается исследование Эдисона. Американский изобретатель не мог тогда и представить, на пороге какого величайшего научного открытия он стоял.

Прошло почти 20 лет, прежде чем наблюдавшееся Эдисоном явление получило свое правильное всестороннее объяснение.

Совет

Оказалось, что при сильном нагревании нити лампы, помещенной в вакуум, она начинает испускать в окружающее пространство электроны. Этот процесс получил название термоэлектронной эмиссии, и его можно рассматривать как испарение электронов из материала нити.

Мысль о возможности практического использования «эффекта Эдисона» впервые пришла в голову английскому ученому Джону Флемингу, который в 1905 году создал основанный на этом принципе детектор, получивший название «двухэлектродной трубки», или «диода» Флеминга.

Лампа Флеминга представляла собой обычный стеклянный баллон, заполненный разреженным газом. Внутри баллона помещалась нить накала вместе с охватывавшим ее металлическим цилиндром. Нагретый электрод лампы непрерывно испускал электроны, которые образовывали вокруг него «электронное облако». Чем выше была температура электрода, тем выше оказывалась плотность электронного облака.

При подключении электродов лампы к источнику тока между ними возникало электрическое поле.

Если положительный полюс источника соединяли с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то под действием электрического поля электроны частично покидали электронное облако и устремлялись к холодному электроду. Таким образом, между катодом и анодом устанавливался электрический ток.

При противоположном включении источника отрицательно заряженный анод отталкивал от себя электроны, а положительно заряженный катод — притягивал. В этом случае электрического тока не возникало.

То есть диод Флеминга обладал ярко выраженной односторонней проводимостью.

Будучи включенной в приемную схему, лампа действовала подобно выпрямителю, пропуская ток в одном направлении и не пропуская в обратном, и могла служить, таким образом, волноуказателем — детектором.

Для некоторого повышения чувствительности лампы подавался соответствующим образом подобранный положительный потенциал. В принципе приемная схема с лампой Флеминга почти ничем не отличалась от других радиосхем того времени. Она уступала в чувствительности схеме с детектором магнитного типа, но обладала несравненно большей надежностью.

Дальнейшим выдающимся достижением в области совершенствования и технического применения электронной лампы стало изобретение в 1907 году американским инженером Ли де Форестом лампы, содержащей дополнительный третий электрод. Этот третий электрод был назван изобретателем «сеткой», а сама лампа — «аудином», но в практике за ней закрепилось другое название — «триод».

Третий электрод, как это видно уже из его названия, был не сплошным и мог пропускать электроны, летевшие от катода к аноду. Когда между сеткой и катодом включался источник напряжения, между этими электродами возникало электрическое поле, сильно влияющее на количество электронов, достигающих анода, то есть на силу тока, текущего через лампу (силу анодного тока).

При уменьшении напряжения, подаваемого на сетку, сила анодного тока уменьшалась, при увеличении — возрастала.

Обратите внимание

Если на сетку подавали отрицательное напряжение, анодный ток вообще прекращался — лампа оказывалась «запертой».

Замечательное свойство триода состояло в том, что управляющий ток мог быть во много раз меньше основного — ничтожные изменения напряжения между сеткой и катодом вызывали довольно значительные изменения анодного тока.

Последнее обстоятельство позволяло использовать лампу для усиления малых переменных напряжений и открывало перед ней необычайно широкие возможности для практического применения.

Появление трехэлектродной лампы повлекло за собой быструю эволюцию радиоприемных схем, так как возникла возможность в десятки и сотни раз усиливать принимаемый сигнал. Многократно возросла чувствительность приемников.

Одна из ранних схем лампового приемника была предложена уже в 1907 году тем же Де Форестом.

Между антенной и заземлением здесь включен контур LC, на зажимах которого возникает переменное напряжение высокой частоты, образовавшееся под действием энергии, полученной из антенны.

Это напряжение подавалось на сетку лампы и управляло колебаниями анодного тока.

Таким образом, в анодной цепи получались усиленные колебания принимаемого сигнала, которые могли приводить в движение мембрану телефона, включенного в ту же цепь.

Первая трехэлектродная лампа-аудин Де Фореста имела множество недостатков. Расположение электродов в ней было таким, что большая часть электронного потока попадала не на анод, а на стеклянный баллон.

Управляющее влияние сетки оказывалось недостаточным. Лампа была плохо откачана и содержала значительное число молекул газа.

Важно

Они ионизировались и непрерывно бомбардировали нить накала, оказывая на нее разрушительное воздействие.

В 1910 году немецкий инженер Роберт фон Либен создал усовершенствованную электронную лампу-триод, в которой сетка была выполнена в форме перфорированного листа алюминия и помещалась в центре баллона, деля его на две части. В нижней части лампы находилась нить накала, в верхней — анод. Такое расположение сетки позволяло усиливать ее управляющее действие, так как через нее проходил весь электронный поток.

Анод в этой лампе имел форму прутика или спирали из алюминиевой проволоки, а катодом служила платиновая нить. Особое внимание Либен обратил на увеличение эмиссионных свойств лампы.

Читайте также:  Празднуем середину осени: успей поймать свой подарок!

В этих целях впервые было предложено покрывать нить накала тонким слоем окисла кальция или бария.

Кроме того, в баллон вводились ртутные пары, которые создавали дополнительную ионизацию и увеличивали тем самым катодный ток.

Итак, электронная лампа сначала вошла в обиход в качестве детектора, потом — усилителя. Но ведущее место в радиотехнике она завоевала только после того, как была обнаружена возможность использовать ее для генерирования незатухающих электрических колебаний.

Самый первый ламповый генератор создал в 1913 году замечательный немецкий радиотехник А. Мейсснер.

На основе триода Либена он построил также первый в мире радиотелефонный передатчик и в июне 1913 года осуществил радиотелефонную связь между Науэном и Берлином на расстоянии 36 км.

Совет

Ламповый генератор содержал колебательный контур, состоящий из катушки индуктивности L и конденсатора C. Уже говорилось, что если такой конденсатор зарядить, то в контуре возникают затухающие колебания. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.

Следовательно, энергия от источника постоянного напряжения должна периодически поступать в контур. С этой целью в электрическую цепь колебательного контура включали ламповый триод, так что колебания с контура подавались на его сетку. В анодную цепь лампы включалась катушка Lc, индуктивно связанная с катушкой L колебательного контура.

В момент включения схемы ток от батареи, постепенно нарастая, движется через триод и катушку Lc. При этом по закону электромагнитной индукции в катушке L будет находиться электрический ток, который заряжает конденсатор C.

Напряжение с пластин конденсатора, подается на катод и сетку.

При включении положительно заряженная пластина конденсатора соединяется с сеткой, то есть заряжает ее положительно, что способствует росту тока, проходящего через катушку Lc.

Это будет продолжаться до тех пор, пока анодный ток не достигнет максимума (ведь ток в лампе определяется количеством электронов, испаряемых с катода, а их число не может быть беспредельно — возрастая до какого-то максимума, этот ток уже больше не увеличивается при росте сеточного напряжения). Когда это произойдет, через катушку Lc потечет постоянный ток. Поскольку индуктивная связь осуществляется только при переменном токе, в катушке L тока не будет.

В связи с этим конденсатор начнет разряжаться. Положительный заряд сетки, следовательно, будет уменьшаться, а это немедленно скажется на величине анодного тока — он тоже будет уменьшаться. Следовательно, и ток через катушку Lc будет убывающим, что создаст в катушке L ток противоположного направления.

Поэтому, когда конденсатор C окажется разряженным, уменьшающийся ток через Lc будет по-прежнему индуктировать ток в катушке L, вследствие чего пластины конденсатора будут заряжаться, но в противоположном направлении, так что на пластине, связанной с сеткой, будет накапливаться отрицательный заряд.

Это вызовет, в конце концов, полное прекращение анодного тока — протекание тока через катушку L вновь прекратится, и конденсатор начнет разряжаться. Вследствие этого отрицательный заряд на сетке будет все меньше и меньше, снова появится анодный ток, который будет возрастать. Так весь процесс повторится сначала.

Из этого описания видно, что через сетку лампы будет протекать переменный ток, частота которого равна собственной частоте колебательного контура LC.

Обратите внимание

Но эти колебания будут не затухающими, а постоянными, поскольку они поддерживаются путем постоянного добавления энергии батареи через катушку Lc, индуктивно связанную с катушкой L.

Изобретение лампового генератора позволило сделать важный шаг в технике радиосвязи — кроме передачи телеграфных сигналов, состоявших из коротких и более продолжительных импульсов, стала возможна надежная и высококачественная радиотелефонная связь — то есть передача с помощью электромагнитных волн человеческой речи и музыки.

Может показаться, что радиотелефонная связь не имеет в себе ничего сложного. В самом дела, звуковые колебания с помощью микрофона легко преобразуются в электрические.

Почему бы, усилив их и подав в антенну, не передавать на расстояние речь и музыку точно так же, как передавался до этого код Морзе? Однако в действительности такой способ передачи неосуществим, так как через антенну хорошо излучаются только мощные колебания высокой частоты.

А медленные колебания звуковой частоты возбуждают в пространстве настолько слабые электромагнитные волны, что принять их нет никакой возможности.

  Поэтому до создания ламповых генераторов, вырабатывающих колебания высокой частоты, радиотелефонная связь представлялась чрезвычайно сложным делом.

Для передачи звука эти колебания изменяют или, как говорят, модулируют с помощью колебаний низкой (звуковой) частоты.

Суть модуляции заключается в том, что высокочастотные колебания генератора и низкочастотные от микрофона накладываются друг на друга и таким образом подаются в антенну.

Модуляция может происходить разными способами. Например, микрофон включается в цепь антенны. Так как сопротивление микрофона меняется под действием звуковых волн, ток в антенне будет в свою очередь меняться; иначе говоря, вместо колебаний с постоянной амплитудой, мы будем иметь колебания с изменяющейся амплитудой — модулированный ток высокой частоты.

Важно

Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой.

Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом.

Поэтому в приемнике необходимо произвести обратный процесс — из высокочастотных модулированных колебаний выделить сигнал звуковой частоты — или, говоря другими словами, произвести детектирование сигнала.

Детектирование осуществлялось с помощью вакуумного диода. Диод, как уже говорилось, пропускал ток только в одном направлении, превращая переменный ток в пульсирующий. Этот пульсирующий ток сглаживался с помощью фильтра.

Простейшим фильтром мог быть конденсатор, подключенный параллельно с телефонной трубкой. Работа фильтра происходила так. В тот момент времени, когда диод пропускал ток, часть его ответвлялась в конденсатор и заряжала его.

В промежутках между импульсами, когда диод оказывался заперт, конденсатор разряжался на трубку.

Поэтому в интервале между импульсами ток протекал через трубку в ту же сторону, что и сам импульс. Каждый следующий импульс подзаряжал конденсатор.

Благодаря этому через трубку протекал ток звуковой частоты, форма которого почти полностью воспроизводила форму низкочастотного сигнала на передающей станции.

После усиления электрические колебания низкой частоты превращались в звук; Простейший детекторный приемник состоит из колебательного контура, связанного с антенной, и присоединенной к контуру цепи, состоящей из детектора и телефона.

Совет

Первые электронные лампы были еще очень несовершенны. Но в 1915 году Ленгмюр и Гедэ предложили эффективный способ откачки ламп до очень малых давлений, благодаря чему на смену ионным лампам пришли вакуумные. Это подняло электронную технику на значительно более высокий уровень.

Источник: http://istoriz.ru/elektronnaya-lampa-istoriya-izobreteniya.html

Электронная лампа

В 1883 году знаменитый изобретатель Эдисон, работая над усовершенствованием лампы накаливания, обнаружил, что помещенная в вакуум нить лампы при сильном нагревании начинает «выбрасывать» в окружающее пространство большое количество электронов.

Это явление, названное термоэлектронной эмиссией, получило широкое применение в электронных лампах. Первые электронные лампы имели такие же прозрачные стеклянные баллоны, как и электрические лампы накаливания. Нити накала в них ярко светились. Электронная лампа сегодня имеет стеклянный, металлический или керамический баллон.

Внутри баллона укреплены электроды и создается вакуум, чтобы газы не препятствовали движению электронов и электроды служили дольше. Лампа имеет катод и анод. Отрицательный электрод — это катод, он служит источником электронов. Положительный электрод — анод окружает катод. Анод бывает цилиндрической формы или коробки, не имеющей 2-х стенок.

Названия электронных ламп зависят от количества электродов: 2 электрода — диод; 3 — триод; 4 — тетрод и т.д.

Первая электронная лампа была изобретена английским ученым Флемингом в 1904 году. Используя «эффект Эдисона», он создал детектор, который назовут «двухэлектродной трубкой» или «диодом». В стеклянный баллон с разреженным газом Флеминг поместил нить накала, которую окружал металлический цилиндр.

При нагревании электрод лампы начинал испускать электроны, вокруг него образовывалось электронное облако. Плотность облака увеличивалась при повышении температуре электрода. Если электроды лампы подключались к источнику тока, возникало электрическое поле.

Если отрицательный полюс источника соединялся с нагретым электродом (катодом), а положительный — с холодным (анодом), то электроны под влиянием электрического поля покидали «облако» и направлялись к аноду. Между анодом и катодом появлялся электрический ток. В случае, если анод зарядить отрицательно, он будет отталкивать электроны, а катод с положительным зарядом — притягивать.

Тока в цепи не будет. В диоде Флеминга ток шел в одном направлении, т.е. обладал односторонней проводимостью. Приемная схема с диодом Флеминга почти не отличалась от прочих радиосхем и не осуществила переворота в радиотехнике.

Выдающимся достижением в этой области стало изобретение американского инженера Ли де Фореста. В 1907 году он создал лампу с дополнительным третьим электродом, названным им «сеткой». Лампу изобретатель назвал «аудином», правда, в дальнейшем ее стали называть «триод».

Работа триода, как и любой электронной лампы, построена на движении электронов между катодом и анодом. Третий электрод (сетка) был расположен ближе к катоду,не был сплошным, имел вид спирали из проволоки, пропускал электроны, направленные от катода к аноду. При подаче на сетку не высокого отрицательного напряжения уменьшалась сила анодного тока, т.к.

сетка отталкивала какую-то часть электронов, двигавшихся от катода к аноду. Если на сетку поступало высокое отрицательное напряжение, она становилась непреодолимым препятствием для электронов, которые задерживались между катодом и сеткой. Анодный ток прекращался, хотя на катоде был «минус», а на аноде — «плюс».

Обратите внимание

Если на сетку подать положительное напряжение, она начинает притягивать электроны, помогая аноду, сила тока, проходящая через лампу, значительно увеличивается. Итак, подавая на сетку разное напряжение, можно регулировать силу анодного тока. Даже небольшие изменения напряжения, происходящие между катодом и сеткой, вызывают большие изменения анодного тока.

Это позволяло использовать электронную лампу для увеличения малых переменных напряжений и, соответственно, для широкого применения на практике.

Появление триодов привело к быстрым эволюционным переменам радиоприемных схем. Появилась возможность усиливать принимаемый сигнал в сотни раз, чувствительность приемников возросла многократно. Уже в 1907 году Ли де Форест предложил схему лампового приемника. Однако первая трехэлектродная лампа имела ряд значительных недостатков.

Так, электроды располагались так, что значительная часть электронного потока направлялась на стеклянный баллон, а не на анод. Плохо откачанная лампа содержала молекулы газа, которые, ионизировавшись, оказывали разрушительное воздействие на нить накала. В 1910 году Либен усовершенствовал лампу-триод.

Сетка представляла перфорированный лист алюминия и помещалась в центре лампы, поделив ее на 2 части. Внизу находилась платиновая нить накала. Анод в форме спирали из алюминиевой проволоки или прутика размещался в верхней части лампы. Чтобы защитить нить накала, ее покрывали тонким слоем бария или окисла кальция.

Для дополнительной ионизации внутрь лампы вводились ртутные пары, что увеличивало катодный ток.

Вскоре появились лампы с несколькими сетками: тетроды — лампы с 2-мя сетками; пентоды — с 3-мя. Этобыли универсальные электронные лампы для усиления напряжения постоянного и переменного токов. Их использовали как детекторы и генераторы электрических колебаний.

Появились и комбинированные лампы, в их баллонах было по две, три электронные лампы и назывались они: диод-пентод, триод-пентод и т.д. Такие лампы работали как детекторы (диод) и усилители напряжения (пентод).

Важно

В зависимости от применения электронные лампы имеют разные размеры: от сверхминиатюрных, не толще карандаша, (радиоприемники, телевизоры и проч.) до огромных, в рост человека, (усилители радиоузлов, радиопередатчики).

Источник: http://mirnovogo.ru/elektronnaya-lampa

Как развивалась электроника

ПодробностиКатегория: Электричество и магнетизмОпубликовано 19.06.2015 06:06Просмотров: 3035

Читайте также:  Адская неделя: правила. чем полезна "адская неделя"?

Говоря об электронике, мы представляем себе компьютеры, телевизоры, печи СВЧ, мобильные телефоны и другие устройства.

Между тем, это не только область техники, где создаются эти устройства. Это ещё и наука, занимающаяся изучением процессов, происходящих с заряженными частицами. Мы вряд ли получим ответ на вопрос, когда появилась электроника.

Но проследить за историей её развития вполне возможно.

Современная электроника

В современной электронике можно выделить следующие основные области.

Бытовая электроника. К ней относятся все бытовые приборы – телевизоры, электроплиты, утюги, мобильные телефоны и др. В этих устройствах используют электрическое напряжение, электрический ток, электромагнитное поле или электромагнитные волны.

Энергетика. Это производство, передача и потребление электрической энергии. Сюда относят и электрические приборы высокой мощности – электростанции, электродвигатели, линии электропередач.

Микроэлектроника. В свою очередь она подразделяется на оптоэлектронику, звуко-видео-технику и цифровую электронику.

Приборы оптоэлектроники служат для преобразования светового излучения в электрический ток. К ним относятся фотодиоды, фототранзисторы, фоторезисторы и др. Другой тип приборов: светодиоды, лазеры, лампы накаливания, наоборот, преобразуют электрический ток в световое излучение.

Звуко-видео-техника – это устройства, в которых происходит преобразование звука и изображения.

К цифровой микроэлектронике относятся компьютеры, цифровые телевизоры, мобильные телефоны, панели управления устройствами и др.

Основной активный элемент в электронике – микросхема.

Из истории

Как появилась электроника?

Современному человеку трудно представить, как можно передать информацию на большое расстояние, не имея телефона, радио или компьютера, подключенного к интернету. Между тем потребность делиться информацией у человечества была всегда. И делалось это самыми различными способами.

Древние люди предупреждали друг друга об опасности, подавая сигналы криком, разжигая костры, издавая барабанную дробь. Позже появилась голубиная почта, новости приносили специальные гонцы. В Китае информацию передавали с помощью воздушных змеев, окрашенных по-разному в зависимости от вида информации, которую они несли.

Пожалуй, самым распространённым был световой способ передачи. На всём протяжении линии связи устанавливались башни, на каждой из которых зажигали огонь, как только его видели на предыдущей башне. И так сигнал передавался по цепи. Позднее, когда изобрели зеркало, сообщения начали посылать от башни к башне с помощью отражённых световых сигналов.

Совет

На море для передачи информации использовалась азбука Морзе, в которой символы кодировались с помощью различных положений сигнальных флажков.

Словом, самых разных способов человечество придумало немало, но все они действовали лишь на коротком расстоянии и вряд ли могли нормально работать, когда видимость ухудшалась.

Первый электромагнитный телеграф

Электромагнитный телеграф Шиллинга

Всё изменилось, когда изобрели электрический телеграф. Точнее, это был электромагнитный телеграф, использовавший электромагнетизм для передачи сигналов.

Многие физики пытались создать такой прибор, но первым его придумал русский дипломат, изобретатель-электротехник, балтийский немец по происхождению, Павел Львович Шиллинг.  После открытия Эрстедом воздействия электрического тока на магнитную стрелку, он понял, что на основе этого явления можно создать телеграф.

Его передающее устройство состояло из 16 клавиш, с помощью которых замыкались электрические цепи тока прямого и обратного направлений. На принимающем устройстве были установлены 6 мультипликаторов с магнитными стрелками. Эти стрелки подвешивались на нитях.

С одной стороны к ним прикреплялись белые бумажные кружочки, с другой чёрные. Замыкая цепи с помощью клавиш, посылали ток того или иного направления. В принимающем устройстве под воздействием электрического тока отклонялась одна из магнитных стрелок в сторону белого или чёрного кружочка в зависимости от направления тока.

Таким способом кодировались буквы алфавита. Устройства соединялись подземным кабелем.

Павел Львович Шиллинг

Впервые Шиллинг продемонстрировал своё изобретение 21 октября 1832 г. в собственной квартире. Позднее он установил этот телеграф в Петербурге между Зимним дворцом и зданием министерства путей сообщения.

Свои модификации электромагнитного телеграфа создали немецкий учёный Карл Фридрих Гаусс и немецкий учёный Макс Вебер. Но на больших расстояниях они не применялись.

Обратите внимание

Первую телеграфную линию, действовавшую на расстоянии 5 км, создал в 1838 г. немецкий физик Карл Август Штейнгейль.

В 1895 г. русский физик Александр Степанович Попов изобрёл радио. Это была беспроводная электросвязь, носителем сигнала в которой были электромагнитные волны, распространяющиеся в пространстве свободно, без проводников. Это событие можно считать началом рождения электроники.

Александр Степанович Попов

В действующую модель радио входили радиопередатчик, излучающий сигнал, и приёмник, принимающий его. Радиосвязь сразу же стала широко использоваться в военном деле. Появилась необходимость в новых элементах для неё. Их созданием и занялась электроника.

Когда компьютеры были большими

Конечно, в 1905 г. микросхем ещё не существовало. Зато в этом году была изобретена радиолампа. В простейшем варианте она представляла собой стеклянный герметичный баллон с вакуумом внутри. Наружу были выведены 2 электрода – катод и анод. Третья нить выполняла функцию нагрева. По ней пропускали электрический ток.

Нить разогревалась до очень высокой температуры в несколько сотен, а иногда и тысяч градусов. Между электродами создавалась большая разность потенциалов в 100-300 в. Катод, к которому подводилось отрицательное напряжение, нагревался и начинал испускать электроны. Поток электронов устремлялся к аноду, соединённому с источником положительного напряжения.

В лампе возникал электрический ток.

Электронные лампы

С этого момента электроника начала развиваться семимильными шагами. Радиолампы совершенствовались. В начале 40-х годов ХХ века в год их выпускалось уже несколько миллионов самых разных размеров и конструкций.

Ток в некоторых из них создавали не электроны, а ионы – частицы, имеющие положительный заряд. На их основе были созданы совершенно новые радиоприёмники и передатчики.

Появились проигрыватели пластинок, магнитофоны, первые модели телевизоров.

https://www.youtube.com/watch?v=TyfjlUP7yIA

Из радиоламп состояла элементная база первых компьютеров, которые появились после второй мировой войны в США в 1948 г. и назывались ЭВМ (электронные вычислительные машины). Так как в одной ЭВМ были десятки тысяч радиоламп, то компьютеры имели огромные размеры. Для их размещения также требовались большие залы.

ЭВМ Урал-1

Конечно, долго так продолжать не могло. Можно сказать, что дальнейшее развитие электроники связано с развитием компьютерной техники. Со временем радиолампы, которые к тому же потребляли большую мощность, были вытеснены полупроводниковыми диодами и транзисторами.

Полупроводниковый диод

Полупроводниковые диоды

Как же устроен простейший полупроводниковый прибор – диод?

Он состоит из двух примыкающих друг к другу слоёв полупроводника. В одном слое (n –  проводимость) избыток свободных электронов, а в другом (p – проводимость) – их недостаток, поэтому в том месте, где не хватает электрона, образуется «дырка», имеющая положительный заряд.

Если подать на катод диода (слой, в котором избыток электронов), отрицательный заряд, а на анод положительный, то начнётся движение зарядов, и через переход между слоями пойдёт электрический ток. Такое включение называется «прямым». Диод в этом состоянии открыт.

Диод открыт

Если же на анод подаётся отрицательный заряд, а на катод положительный, то электроны начинают двигаться к «плюсу», а «дырки» к минусу. Тока через переход не будет. Диод закрыт.

Диод закрыт

С появлением полупроводниковых приборов размеры радиоприёмников, телевизоров и других устройств значительно уменьшились, а качество их работы перешло на новый уровень. ЭВМ уже не занимали огромных площадей, но их размеры всё равно оставались большими, а потребляемая мощность была всё ещё довольно велика.

Интегральные микросхемы

Интегральные микросхемы

Но электроника не стояла на месте. Постепенно отдельные диоды и транзисторы уступили место интегральным микросхемам (ИС).

В любом электронном устройстве происходит обработка электрического сигнала. Это происходит с помощью электрической цепи, которая включает в себя не только транзисторы и диоды. В ней есть и другие основные компоненты: конденсаторы, резисторы, катушки индуктивности.

На заре развития электроники они объединялись в одну электронную схему с помощью проводников. И вся эта схема располагалась на одной плате. Каждый такой отдельный элемент можно было заменить, не трогая другие элементы электрической цепи.

Это и делал, например, мастер, когда выходил из строя телевизор.

Важно

А в ИС вся электронная схема, выполняющая определённые логические функции, собиралась в едином корпусе маленьких размеров.

Конечно, это был огромный шаг вперёд. Он привёл к резкому росту быстродействия электронных устройств. И хотя габариты их значительно уменьшились, к примеру, оперативная память объёмом всего в 8 Мб российской ЭВМ ЕС-1046 в 80-е годы ХХ века всё ещё была размером с целый шкаф.

Печатные платы

Печатная плата

Создание интегральных микросхем стало толчком к бурному развитию основной отрасли современной электроники – микроэлектроники.

В любом современном электронном устройстве, будь то компьютер, мобильный телефон, телевизор или стиральная машина, есть печатная плата. В ней все электрические связи выполняются уже не проводами. Их заменили проводящие дорожки, покрытые медной фольгой. И расположены они на этой самой печатной плате.

Это специальная пластина из диэлектрика (текстолита, гетинакса и др.). Кроме проводящих дорожек на ней созданы специальные контактные площадки, монтажные отверстия для установки радиоэлементов, экранирующие поверхности, ламели разъёмов и др.

Печатные платы могут быть однослойными, а могут состоять их нескольких слоёв.

Кстати, не нужно думать, что печатные платы появились в ХХ веке одновременно с появлением микросхем. Годом их рождения физики считают 1902 г.

, когда немецкий инженер Альберт Хансон, занимавшийся разработками в области телефонии, подал заявку на патент. Плата, которую он создал, считается прототипом современных печатных плат.

Основанием платы Хансена служила бумага, пропитанная парафином, на которую наклеивались полоски из бронзовой или медной фольги, служившие проводниками. 

Но массово печатные платы стали применяться в электрических приборах в середине прошлого века. В специальных отверстиях в них крепились сначала радиолампы, затем транзисторы, а потом и микросхемы.

На ИС электроника не остановилась. Процесс уменьшения размеров активных элементов в ней происходит непрерывно. И сейчас уже размер транзистора, собранного на полупроводниковом чипе, составляет всего несколько нанометров. Не правда ли, огромный прогресс по сравнению с электронной радиолампой, размер которой достигал нескольких сантиметров? 

Совет

Именно этот прогресс позволил телевизорам, компьютерам, мобильным телефонам и другим гаджетам стать такими, какими мы их видим в настоящий момент.

Источник: http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/463-kak-razvivalas-elektronika

Этапы развития электронных устройств

Элементная база электроники

Литература

Основная

1. Основы промышленной электроники под редакцией В.Г. Герасименко М. ВШ, 1986 г.

2. Изьюрова .И., Кауфман М.С. Приборы и устройства промышленной электроники. М.В.Ш., 1967 г.

3. Криштафович А.К., Трифонюк В.В. Основы промышленной электроники. М. ВШ, 1985г.

Дополнительная

1. Овечкин Ю.А. Полупроводниковые приборы. М. ВШ, 1979 г.

2. Жеребцов И.П. Основы электроники. Л. Энергопромиздат, 1989 г.

Основные понятия и определения из электроники

Как раздела науки и техники.

Электроника— область науки, техники и производства, охватывающая исследование и разработку электронных устройств и принципов их использования. В основе развития электроники ле­жит непрерывное усложнение функций, выполняемых электрон­ными устройствами.

На определенных этапах становится невозмож­ным решать новые задачи электронными устройствами предыду­щего поколения, или устройствами на основе существующей эле­ментной базы, например с помощью электронных ламп или диск­ретных транзисторов. Таким образом, появляются предпосылки для дальнейшего совершенствования элементной базы.

Основными факторами, вызывающими необходимость разработки электрон­ного устройства на новой элементной базе, являются надежность, габаритные размеры, масса, стоимость и мощность.

Электронное устройство это изделие и его составные части, в основу функционирования которых положены принципы электроники.

Этапы развития электронных устройств

В зависимости от применяемой элементной базы можно выде­лить четыре основных поколения развития электронных устройств.

I поколение электроники (1904— 1950) характерно тем, что основу элементной базы электронных устройств составляли элек­тровакуумные приборы.

В таких приборах рабочее пространство, изолированное газонепроницаемой оболочкой, имеет высокую степень разрежения или заполнено специальной рабочей средой (парами или газами); действие таких приборов основано на ис­пользовании электрических явлений в вакууме или газе.

Читайте также:  Счет 60 в бухгалтерском учете (бухучете) для чайников: структура и пример

Наиболее широ­ко в элементной базе электронных устройств I поколения приме­нялись электронные лампы— электровакуумные приборы, пред­назначенные для различного рода преобразований электрического тока. Электронные устройства, выполненные на лампах, имели сравнительно большие габаритные размеры и массу.

Число эле­ментов в единице объема (плотность монтажа) электронных уст­ройств I поколения составляло у = 0,001 …0,003 эл/см3. Сборка та­ких электронных устройств осуществлялась, как правило, вруч­ную путем соединения электровакуумных приборов между собой и с соответствующими пассивными элементами (резистивными, индуктивными и емкостными) при помощи проводов.

II поколение электронных приборов (1950 — начало 1960-х гг.) характеризуется применением в качестве основной эле­ментной базы дискретных полупроводниковых приборов (диодов, транзисторов и тиристоров).

Обратите внимание

Сборка электронных устройств II по­коления осуществлялась обычно автоматически с применением пе­чатного монтажа, при котором полупроводниковые приборы и пас­сивные элементы располагаются на печатной плате — диэлектри­ческой пластине с металлизированными отверстиями (для подсо­единения полупроводниковых приборов и пассивных элементов), соединенными между собой проводниками. Проводники выпол­нялись путем осаждения медного слоя на плату по заранее задан­ному печатному рисунку, соответствующему определенной элект­ронной схеме. Плотность монтажа электронных устройств II поко­ления за счет применения малогабаритных элементов составляла у = 0,5 эл/см3.

Появление полупроводниковых приборов ознаменовало начало научно-технической революции, развитие которой все более ус­коряющимися темпами продолжается и в настоящее время.

III поколение электронных устройств (1960—1980) связа­но с бурным развитием микроэлектроники— раздела электрони­ки, охватывающего исследование и разработку качественно ново­го типа электронных приборов и принципов их применения. Осно­вой элементной базы этого поколения электронных устройств ста­ли интегральные микросхемы и микросборки.

Интегральная микросхема, или интегральная схема(ИС), пред­ставляет собой совокупность нескольких взаимосвязанных эле­ментов (транзисторов, резисторов, конденсаторов и т.д.), изго­товленных в едином технологическом цикле, т.е. одновременно, на одной и той же несущей конструкции (подложке), и выпол­няющих определенную функцию преобразования информации

Широкое развитие находит блочная конструкция электронных устройств — набор печатных плат, на которые монтируют и микросборки. Плотность монтажа электронных устройств III поколения у = 50 эл/см3.

Этот этап развития электронных устройств характеризуется не только резким уменьшением габаритных размеров, массы и энергопотребления, но и резким повышением их надежности, в том числе за счет сведения к минимуму ручного труда при изготовлении электронных устройств.

IV поколение (с 1980 г.

по настоящее время) характеризуется дальнейшей микроминиатюризацией электронных устройств на базе применения больших (БИС) и сверхбольших (СБИС) интегральных схем, когда уже отдельные функциональные блоки выполняются в одной интегральной схеме.

Плотность монтажа элек­тронных устройств IV поколения у ~ 1000 эл/см3 и выше. Основу БИС и СБИС составляют элементы, принцип действия которых основан на использовании свойств прохождения электрического тока через полупроводниковые материалы.

30 августа 2004 г.

корпорация Intel сделала значительный шаг в развитии технологии производства микросхем нового поколения, создав первые полнофункциональные микросхемы памяти стандарта SRAM (Static Random Access Memory) емкостью 70 Мбит, содержащих более 0,5 млрд транзисторов, на базе 65-нанометровой технологии. Благодаря этому достижению корпорация Intel продолжает выполнять свой план по разработке новой производственной технологии каждые два года в соответствии с законом Мура.

Транзисторы в полупроводниковых микросхемах, изготавливаемых по новой 65-нанометровой технологии (нанометр – одна миллиардная часть метра), имеют затворы (переключатели, включающие и выключающие транзисторы) размером 35 нм, что приблизительно на 30% меньше, чем при производстве по 90-нанометровой технологии. Для сравнения, на диаметре красного кровяного тельца человека можно разместить около 100 таких затворов.

Важно

Новая производственная технология увеличивает количество крошечных транзисторов, помещающихся на одной микросхеме, и дает корпорации Intel основу для создания процессоров будущего, содержащих несколько ядер, а также возможность разработки инновационных функций для новых моделей продукции, в том числе функций виртуализации и безопасности. Новая 65-нанометровая производственная технология корпорации Intel также включает ряд функций, обеспечивающих энергосбережение и повышение производительности.

В апреле 1965 года Гордон Мур, занимавший в ту пору должность директора отдела разработок компании Fairchild Semiconductors, в статье для журнала Electronics дал прогноз развития микроэлектроники, получивший вскоре название закона Мура.

Он сумел предугадать фантастические темпы развития всей отрасли на несколько десятилетий вперед и предсказать, что количество транзисторов на чипе ежегодно будет удваиваться.

Более того, одновременно он сделал провидческий прогноз последствий этого, предсказав, что по мере экспоненциального увеличения числа транзисторов на микросхеме процессоры будут становиться все более дешевыми и быстродействующими, а их производство – все более массовым.

По своей сути закон Мура является не законом природы, а, скорее, эмпирическим правилом.

В своей первоначальной формулировке он действовал до 1975 года, когда, выступая на конференции “International Electron Devices Meeting”, Гордон Мур внес в него коррективы, высказав предположение, что при производстве все более сложных чипов удвоение числа транзисторов будет происходить каждые два года. И опять он оказался прав, разве что в последние годы количество транзисторов на микропроцессоре порой удваивается с интервалом в полтора года.

Любопытные факты и цифры

В 2003 году Гордон Мур подсчитал, что количество транзисторов, ежегодно поставляемых на рынок, достигло 10.000.000.000.000.000.000.

Разрабатываемый сейчас в Intel метод производства микропроцессоров предусматривает, что расстояние между транзисторами на чипе составит одну десятитысячную толщины человеческого волоса. Это равносильно тому, чтобы провести автомобиль по прямой длиной в 650 км с отклонением от оси менее 2,5 см.

За время существования корпорации Intel (т.е. с 1968 года) себестоимость производства транзисторов упала до такой степени, что теперь обходится примерно во столько же, сколько стоит напечатать любой типографский знак – например, запятую.

Совет

В процессе разработки микропроцессоров, содержащих один миллиард транзисторов, Intel уменьшила величину транзисторов до такой степени, что теперь на булавочной головке могут разместиться 200 млн. транзисторов.

Современные транзисторы производства корпорации Intel открываются и закрываются со скоростью полтора триллиона раз в секунду.

В 2005 году начнется производство чипов по технологии 65 нанометров, на 2007-й намечен переход на 45-нанометровый процесс, на 2009 год – внедрение 32-нанометрового, а в 2011 году настанет черед технологического процесса 22 нм.

4. Клас­сификации электронных приборов и устройств.

Элементной базой современных электронных устройств являются электровакуумные и полупроводниковые приборы.

Электровакуумные приборы – электронные приборы, в которых проводимость осуществляется посредством электронов или ионов, движущихся между электродами через вакуум или газ.

Электровакуумные приборы подразделяются на электронные и ионные.

Электронные – через них проходят электроны, не создавая ионизации. Длина свободного пробега электрона больше расстояния между электродами, давление 10-6 мм рт. ст.

Ионные (газоразрядные) – создается ионизация, давление 10-3 мм рт. ст.)

В н.в. применение электронных ламп ограничено в связи с развитием полупроводниковой техники. Однако при больших частотах и мощностях лампы еще находят широкое применение.

Полупроводниковые приборы – электронные приборы,в которых применяются вещества, проводимость которых зависит от их кристаллической решетки и внешних воздействий (температура, свет, эл. поле, потоки быстрых частиц).

Полупроводниковые приборы подразделяются на:

Диоды

Транзисторы

Фотоприборы

Индикаторные приборы.

Индикаторными приборами называют приборы, предназначенные для визуального представления информации.

фотоэлектрическими называют электронные приборы, преобразующие энергию светового излучения в электрическую энергию.

Фоторезистор — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от интенсивности и спектрального состава внешнего излучения.

Обратите внимание

Фотодиод по структуре аналогичен обычному полупроводниковому диоду. Отличие состоит в том, что его корпус снабжен дополнительной линзой, создающей внешний световой поток, направленный, как правило, перпендикулярно плоскости p-n-перехода.

Фототранзистор по структуре аналогичен структуре биполярного транзистора. Он обладает более высокой чувствительностью, чем фотодиод.

Оптоэлектронный прибор содержит одновременно источник и приемник световой энергии. Для оптопары как входным, так и выходным параметром является электрический сигнал, причем гальваническая связь между входной и выходной цепями отсутствует.

В качестве излучателя оптопары могут быть использованы инфракрасный излучающий диод, светоизлучающий диод, люминесцентный излучатель или полупроводниковый лазер. Наибольшее распространение в настоящее время получил инфракрасный излучающий диод, что объясняется простотой его структуры, управления и высоким кпд.

В качестве приемника оптопары находят применение рассмотренные, выше фотоэлектрические приборы: фоторезистор, фотодиод, фототранзистор и др.

Источник: https://studopedya.ru/2-55229.html

Основные направления развития электроники

Вопрос 1: основные направления развития и технологии

Введение

Электронные, квантовые приборы и микроэлектронные изделия являются основой практически всех радиоэлектронных и коммуникационных устройств и систем.

Задачей дисциплины “Электронные, квантовые приборы и микроэлектроника” является подготовка студентов к решению задач, связанных с рациональным выбором элементной базы при разработке радиоэлектронной и коммуникационной аппаратуры, квалифицированной эксплуатации микроэлектронной аппаратуры, а также приобретение навыков работы и знаний по работе с электронными приборами и микроэлектронными изделиями.

Основные направления развития электроники

Электроника – это наука, изучающая явления взаимодействия электронов и других заряженных частиц с электрическими, магнитными и электромагнитными полями, что является физической основой работы электронных приборов и устройств (вакуумных, газозарядных полупроводниковых и других), используемых для передачи, обработки и хранения информации.

Охватывая широкий круг научно-технических и производственных проблем, электроника опирается на достижения в различных областях знаний. При этом, с одной стороны, электроника ставит перед другими науками и производством новые задачи, стимулируя их дальнейшее развитие, и с другой – снабжает их качественно новыми техническими средствами и методами исследований.

Основными направлениями развития электроники являются: вакуумная, твердотельная и квантовая электроника.

Вакуумная электроника – это раздел электроники, включающий исследования взаимодействия потоков свободных электронов с электрическими и магнитными полями в вакууме, а также методы создания электронных приборов и устройств, в которых это взаимодействие используется.

К важнейшим направлениям исследования в области вакуумной электроники относятся: электронная эмиссия (в частности,
термо- и фотоэлектронная эмиссия); формирование потока электронов и / или ионов и управления этими потоками; формирование электромагнитных полей с помощью устройств ввода и вывода энергии; физика и техника высокого вакуума и др.

Важно

Основные направления развития вакуумной электроники связаны с созданием электровакуумных приборов следующих видов: электронных ламп (диодов, триодов, тетродов и т.д.

); электровакуумных приборов сверхвысокой частоты (например, магнетронов, клистронов, ламп бегущей и обратной волны); электроннолучевых и фотоэлектронных приборов (например, кинескопов, видиконов, электронно-оптических преобразователей, фотоэлектронных умножителей); газоразрядных приборов (например, тиратронов, газозарядных индикаторов).

И решает задачи, связанные с изучением свойств твердотельных материалов (полупроводниковых, диэлектрических, магнитных и др.

), влиянием на эти свойства примесей и особенностей структуры материала; изучением свойств поверхностей и границ раздела между слоями различных материалов; созданием в кристалле различными методами областей с различными типами проводимости; созданием гетеропереходов и монокристаллических структур; созданием функциональных устройств микронных и субмикронных размеров, а также способов измерения их параметров. Основными направлениями твердотельной электроники являются: полупроводниковая электроника, связанная с разработкой различных видов полупроводниковых приборов, и микроэлектроника, связанная с разработкой интегральных схем. Квантовая электроника охватывает широкий круг вопросов, связанных с разработкой методов и средств усиления и генерации электромагнитных колебаний на основе эффекта вынужденного излучения атомов и молекул. Основные направления квантовой электроники: создание оптических квантовых генераторов (лазеров), квантовых усилителей, молекулярных генераторов и др. Особенности приборов квантовой электроники следующие: высокая стабильность частоты колебаний, низкий уровень собственных шумов, большая мощность в импульсе излучения – которые позволяют использовать их для создания высокоточных дальномеров, квантовых стандартов частоты, квантовых гироскопов, систем оптической многоканальной связи, дальней космической связи, медицинской аппаратуры, лазерной звукозаписи и воспроизведения и др. Созданы даже миниатюрные лазерные указки для минимального сопровождения.

Рекомендуемые страницы:

Источник: https://megalektsii.ru/s6971t5.html

Ссылка на основную публикацию