Виды черных дыр и их структура: объяснение для чайников

Какие бывают и как образуются черные дыры

Таинственные и неуловимые черные дыры. Законы физики подтверждают возможность их существования во вселенной, но сих пор остается множество вопросов. Многочисленные наблюдения показывают, что дыры существуют во вселенной и этих объектов – больше миллиона.

Что такое черные дыры?

Ещё в 1915 году при решении уравнений Эйнштейна было предсказано такое явление как «черные дыры». Однако научное сообщество заинтересовалось ими только в 1967 году. Их тогда называли «сколлапсировавшие звёзды», «застывшие звёзды».

Сейчас черной дырой называют область времени и пространства, которые обладают такой гравитацией, что из неё не может выбраться даже луч света.

Как образуются черные дыры?

Существуют несколько теорий появления черных дыр, которые делятся на гипотетические и реалистичные. Самая простая и распространенная реалистичная – теория гравитационного каллапса больших звезды.

Когда достаточно массивная звезда перед «смертью» разрастается в размерах и становится не стабильной, расходуя последнее топливо. В то же время масса звезды остается неизменной, но её размеры уменьшаются так как происходит, так называемое, уплотнение.

Иными словами при уплотнении тяжелое ядро “падает” в само себя. Параллельно с этим уплотнение приводит к резкому повышению температуры внутри звезды и внешние слои небесного тела отрываются, из них образуются новые звезды.

Обратите внимание

В это же время в центре звезды – ядро падает в свой собственный “центр”. В результате действия сил гравитации центр обваливается в точку – т.е силы гравитации на столько сильны, что поглощают уплотненное ядро.

Так рождается черная дыра, которая начинает искажать пространство и время, что даже свет не может вырваться из неё.

В центрах всех галактик находится сверхмассивная черная дыра. Согласно теории относительности Эйнштейна:

«Любая масса искажает пространство и время».

А теперь представьте, как сильно черная дыра искажает время и пространство, ведь её масса огромна и одновременно втиснута в сверхмалый объем. Из-за этой способности возникает следующая странность:

«Черные дыры обладают способностью практически останавливать время и сжимать пространство. Из-за этого сильнейшего искажения дыры становятся не видимыми для нас».

Если черные дыры не видны, откуда мы знаем, что они существуют?

Да, хоть черная дыра и невидимка, но она должна быть заметна за счет материи, которая падает в неё. А так же звездный газ, который притягивается черной дырой, при приближении к горизонту событий температура газа начинает расти до сверхвысоких значений, что приводит к свечению.

Именно поэтому черные дыры светятся. Благодаря такому, хоть и слабому свечению, астрономы и астрофизики объясняют наличие в центре галактики объекта с малым объемом, но огромной массой.

В данный момент в результате наблюдений обнаружено порядка 1000 объектов, которые похожи по поведению на черные дыры.

Черные дыры и галактики

Как черные дыры могут влиять на галактики? Этот вопрос мучает ученых всего мира. Есть гипотеза, согласно которой именно черные дыры, находящиеся в центре галактики влияет на её формы и эволюцию. И что при столкновении двух галактик происходит слияние черных дыр и во время этого процесса выбрасывается такое огромное количество энергии и материи, что образуются новые звезды.

Типы черных дыр

  • Согласно существующей теории, есть три типа черных дыр: звездные, сверхмассивные, миниатюрные. И каждая из них сформировалась особым образом.
  • – Черные дыры звездных масс, она разрастается до огромных размеров и разрушается.- Сверхмассивные черные дыры, которые могут иметь массу, эквивалентную миллионам Солнц, с большой вероятностью существуют в центрах практически всех галактик, включая наш Млечный путь. Ученые все ещё имеют разные гипотизы образования сверхмассивных черных дыр. Пока известно только одно – сверхмассивные черные дыры – побочный продукт образования галактик. Сверхмассивные черные дыры – они отличаются от обычных тем, что имеют очень большой размер, но парадоксально маленькую плотность.
  • – Еще никто не смог обнаружить миниатюрную черную дыру, которая имела бы массу меньшую, чем Солнце. Вполне возможно, что миниатюрные дыры могли бы образоваться вскоре после «Большого взрыва», который является начальной точной существования нашей вселенной (около 13,7 млрд лет назад).
  • – Совсем недавно было введено новое понятие как “белые черные дыры”. Это пока гипотетическая черня дыра, которая является противоположностью черной дыре. Активно изучал возможность существования белых дыр Стивен Хокинг.
  • – Квантовые черные дыры – они существуют пока только в теории. Квантовые черные дыры могут образовываться при столкновении сверхмалых частиц в результате ядерной реакции.
  • – Первичные черные дыры – тоже теория. Они образовались сразу после возникновения.

В данный момент существует большое количество открытых вопросов, на которые ещё предстоит ответить будущим поколениям. Например, могут ли в действительности существовать так называемые “кротовые норы”, с помощью которых можно путешествовать по пространству и времени. Что именно происходит внутри черной дыры и каким законам подчиняются эти явления. И как быть с исчезновением информации в черной дыре?

Источник: http://ya-uznayu.ru/kosmos/291-kakie-byvayut-i-kak-obrazuyutsya-chernye-dyry.html

Виды черных дыр

Черные дыры во Вселенной

Черная дыра – космический объект, который образуется при неограниченном гравитационном сжатии (гравитационном коллапсе) массивных космических тел. Существование этих объектов предсказывает общая теория относительности. Сам термин “черная дыра” введен в науку американским физиком Джоном Уилером в 1968 г. для обозначения сколлапсировавшей звезды.

Черная дыра – область в пространстве, возникшая в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть.

Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее.

Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют «горизонтом событий».

Поскольку до сих пор имеются лишь косвенные указания на существование черных дыр на расстояниях в тысячи световых лет от Земли, наше дальнейшее изложение основывается главным образом на теоретических результатах.

Астрономы пришли к заключению, что черные дыры не рождаются огромными, а постепенно растут за счет газа и звезд галактик.

Данные показывают, что гигантские черные дыры не предшествовали рождению галактик, а эволюционировали вместе с ними, поглощая определенный процент массы звезд и газа центральной области галактики.

Это означает, что в меньших галактиках черные дыры менее массивны, их массы составляют не многим более нескольких миллионов солнечных масс. Черные дыры в центрах гигантских галактик, включают в себя миллиарды солнечных масс.

Важно

Все дело в том, что окончательная масса черной дыры формируется в процессе формирования галактики. В некоторых случаях черные дыры увеличиваются не только за счет поглощения газа отдельной галактики, но и путем слияния галактик, в результате чего их черные дыры объединяются.

Образование черных дыр

Черные дыры образуются в результате коллапса гигантских нейтронных звезд массой более 3 масс Солнца. При сжатии их гравитационное поле уплотняется все сильнее и сильнее. Наконец звезда сжимается до такой степени, что свет уже не может преодолеть ее притяжения.

Радиус, до которого должна сжаться звезда, чтобы превратиться в черную дыру, называется гравитационным радиусом. Для массивных звезд он составляет несколько десятков километров.  Поскольку черные дыры не светят, то единственный путь судить о них – это наблюдать воздействие их гравитационного поля на другие тела.

  Имеются косвенные доказательства существования черных дыр более чем в 10 тесных двойных рентгеновских звездах.

В пользу этого говорят, во-первых, отсутствие известных проявлений твердой поверхности, характерных для рентгеновского пульсара или рентгеновского барстера, и, во-вторых, большая масса невидимого компонента двойной системы (больше 3 масс Солнца). Один из наиболее вероятных кандидатов в черные дыры – это ярчайший источник рентгеновских лучей в созвездии Лебедя – Лебедь Х-1.

По современным представлениям, есть четыре сценария образования чёрной дыры:

1. Гравитационный коллапс (катастрофическое сжатие) достаточно массивной звезды (более чем 3,6 масс Солнца) на конечном этапе её эволюции.

2. Коллапс центральной части галактики или прагалактического газа. Современные представления помещают огромную чёрную дыру в центр многих, если не всех, спиральных и эллиптических галактик. Например в центре нашей 3. 3. 3. Галактики находится чёрная дыра Стрелец A* массой 4,31х106 М, вокруг которой вращается меньшая чёрная дыра.

4. Формирование чёрных дыр в момент Большого Взрыва в результате флуктуаций гравитационного поля и/или материи. Такие чёрные дыры называются первичными.

Эволюция черных дыр

Ученые имеют веские доказательства существования двух различных классов черных дыр: первые – это черные дыры со звездными массами примерно в 10 раз больше Солнца, вторые – сверхмассивные черные дыры, которые располагаются в центре галактик и имеют массу от сотен тысяч до миллиардов масс Солнца. Но продолжает оставаться загадкой, как образуются и существуют черные дыры средней массы? Речь идет о так называемых черных дырах с промежуточными массами в диапазоне между 100 и 10 000 масс Солнца.

Совет

Доказательства происхождения этих объектов остается спорным. До сих пор не было обнаружено более чем одной такой черной дыры в одной галактике. Но группа исследователей нашла в результате изучения рентгеновских данных две средние по массе черные дыры в галактике M82, которая находится на расстоянии около 12 миллионов световых лет от Земли.

По особенностям излучения, испускаемого черными дырами в M82, исследователи заключили, что масса одной из черных дыр колеблется в пределах от 12 до 43 тысяч солнечных масс, а масса второй – от 200 до 800 масс Солнца. Первый объект находится на расстоянии 290 световых лет от центра галактики M82. Второй объект, расположен на расстоянии 600 световых лет в проекции от центра галактики.

“Впервые были обнаружены две средние по массе черные дыры в одной галактике, – поделился один из исследователей Хуа Фэн из Университета Цинхуа, Китай. – Их расположение вблизи центра галактики может содержать сведения о происхождении крупнейших черных дыр во Вселенной, таких как сверхмассивные черные дыры, которые найдены в центрах большинства галактик”.

Одним из возможных механизмов для формирования сверхмассивных черных дыр является цепная реакция столкновения звезд и компактных звездных скоплений, что приводит к накоплению очень массивных объектов, которые затем формируются в черные дыры промежуточной массы. Далее промежуточные черные дыры притягиваются к центру галактики и сливаются со сверхмассивной черной дырой в центре галактики.

“Мы не можем сказать точно, является ли подобный процесс формирования черных дыр в M82 подтверждением этой теории, но мы точно знаем, что обе эти средние черные дыры расположены вблизи звездных скоплений, – сказал Фил Карет из Университета штата Айова, один из авторов статьи. – Кроме того, M82 является ближайшей к нам галактикой, где условия аналогичны тем, которые были в ранней Вселенной, с наличием большого количества звезд”.

До сих пор астрономы точно не знали, могут ли присутствовать в одной галактике сразу две черные дыры средней массы. Возможно, открытие прольет свет на процессы образования и эволюции сверхмассивных черных дыр в галактиках.

Чёрные дыры звёздных масс.

Чёрные дыры звёздных масс образуются как конечный этап жизни звезды, после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:

Погасшая очень плотная звезда, состоящая в основном, в зависимости от массы, изгелия, углерода, кислорода, неона, магния, кремния или железа (основные элементы перечислены в порядке возрастания массы остатка звезды). Такие остатки называют белыми карликами, масса их ограничивается сверху пределом Чандрасекара.

Нейтронная звезда, масса которой ограничена пределом Оппенгеймера — Волкова.

Чёрная дыра.

По мере увеличения массы остатка звезды происходит движение равновесной конфигурации вниз по изложенной последовательности. Вращательный момент увеличивает предельные массы на каждой ступени, но не качественно, а количественно (максимум в 2—3 раза).

Условия (главным образом, масса), при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Дополнительные сложности представляет моделирование звёзд на поздних этапах их эволюции из-за сложности возникающего химического состава и резкого уменьшения характерного времени протекания процессов. Достаточно упомянуть, что одни из крупнейших космических катастроф, вспышки сверхновых, возникают именно на этих этапах эволюции звёзд. Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Радиус чёрной дыры при этом очень мал — несколько десятков километров.

Впоследствии чёрная дыра может разрастись за счёт поглощения вещества — как правило, это газ соседней звезды в двойных звёздных системах (столкновение чёрной дыры с любым другим астрономическим объектом очень маловероятно из-за её малого диаметра).

Обратите внимание

Процесс падения газа на любой компактный астрофизический объект, в том числе и на чёрную дыру, называется аккрецией.

При этом из-за вращения газа формируется аккреционный диск, в котором вещество разгоняется до релятивистских скоростей, нагревается и в результате сильно излучает, в том числе и в рентгеновском диапазоне, что даёт принципиальную возможность обнаруживать такие аккреционные диски (и, следовательно, чёрные дыры) при помощи ультрафиолетовых ирентгеновских телескопов. Основной проблемой является малая величина и трудность регистрации отличий аккреционных дисков нейтронных звёзд и чёрных дыр, что приводит к неуверенности в идентификации астрономических объектов с чёрными дырами. Основное отличие состоит в том, что газ, падающий на все объекты, рано или поздно встречает твёрдую поверхность, что приводит к интенсивному излучению при торможении, но облако газа, падающее на чёрную дыру, из-за неограниченно растущего гравитационного замедления времени (красного смещения) просто быстро меркнет при приближении к горизонту событий, что наблюдалось телескопом Хаббла в случае источника Лебедь X-1.

Столкновение чёрных дыр с другими звёздами, а также столкновение нейтронных звёзд, вызывающее образование чёрной дыры, приводит к мощнейшему гравитационному излучению, которое, как ожидается, можно будет обнаруживать в ближайшие годы при помощи гравитационных телескопов.

В настоящее время есть сообщения о наблюдении столкновений в рентгеновском диапазоне.

25 августа 2011 года появилось сообщение о том, что впервые в истории науки группа японских и американских специалистов смогла в марте 2011 года зафиксировать момент гибели звезды, которую поглощает чёрная дыра

Сверхмассивные чёрные дыры. Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики — Стрелец A

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством ученых надёжно доказанным астрономическими наблюдениями

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены.

Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд. солнечных масс.

Для чёрной дыры в ядре галактики гравитационный радиус равен 3•1015 см = 200 а. е., что в пять раз больше расстояния от Солнца до Плутона. Критическая плотность при этом равна 0,2•10-3 г/см³, что в несколько раз меньше плотности воздуха.

Первичные чёрные дыры в настоящее время носят статус гипотезы.

Важно

Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры.

При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

Квантовые чёрные дыры. Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации.

Однако из общих соображений весьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса — порядка 10−5 г, радиус — 10−35 м.

 Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Эксперименты по протон-протонным столкновениям с полной энергией 7 ТэВ на Большом адронном коллайдере показали, что этой энергии недостаточно для образования микроскопических чёрных дыр. На основании этих данных делается вывод, что микроскопические чёрные дыры должны быть тяжелее 3,5–4,5 ТэВ в зависимости от конкретной реализации.



Источник: http://biofile.ru/bio/21498.html

Все о черных дырах | Мир Знаний

Каждый человек, знакомящийся с астрономией, рано или поздно испытывает сильное любопытство по поводу самых загадочных объектов Вселенной — черных дыр. Это настоящие властелины мрака, способные «проглотить» любой проходящий поблизости атом и не дать ускользнуть даже свету, — настолько мощно их притяжение. Эти объекты представляют настоящую проблему для физиков и астрономов.

Первые пока еще не могут понять, что же происходит с упавшим внутрь черной дыры веществом, а вторые хоть и объясняют самые энергозатратные явления космоса существованием черных дыр, никогда не имели возможности наблюдать ни одну из них непосредственно.

Мы расскажем об этих интереснейших небесных объектах, выясним, что уже было открыто и что еще предстоит узнать, чтобы приподнять завесу тайны.

Что такое черная дыра?

Название «черная дыра» (по-английски — black hole) было предложено в 1967 году американским физиком-теоретиком Джоном Арчибальдом Уилером (см. фото слева). Оно служило для обозначения небесного тела, притяжение которого настолько сильно, что не отпускает от себя даже свет. Потому она и «черная», что не испускает света.

Косвенные наблюдения

В этом кроется причина такой таинственности: поскольку черные дыры не светятся, мы не можем увидеть их непосредственно и вынуждены искать и изучать их, используя лишь косвенные свидетельства, которые их существование оставляет в окружающем пространстве. Иными словами, если черная дыра поглощает звезду, мы не видим черную дыру, но можем наблюдать разрушительные последствия воздействия ее мощного гравитационного поля.

Интуиция Лапласа

Несмотря на то, что выражение «черная дыра» для обозначения гипотетической финальной стадии эволюции звезды, сколлапсировавшей в себя под воздействием силы тяжести, появилось сравнительно недавно, идея о возможности существования таких тел возникла более двух веков назад.

Англичанин Джон Мичелл и француз Пьер-Симон де Лаплас независимо друг от друга выдвинули гипотезу о существовании «невидимых звезд»; при этом они основывались на обычных законах динамики и законе всемирного тяготения Ньютона.

Сегодня черные дыры получили свое правильное описание на основе общей теории относительности Эйнштейна.

В своем труде «Изложение системы мира» (1796) Лаплас писал: «Яркая звезда той же плотности, что и Земля, диаметром, в 250 раз превосходящим диаметр Солнца, благодаря своему гравитационному притяжению не позволила бы световым лучам добраться до нас. Следовательно, возможно, что самые крупные и самые яркие небесные тела по этой причине являются невидимыми».

Непобедимое тяготение

В основе идеи Лапласа лежало понятие скорости убегания (второй космической скорости). Черная дыра является настолько плотным объектом, что ее притяжение способно задержать даже свет, развивающий наибольшую в природе скорость (почти 300000 км/с). На практике, для того чтобы убежать из черной дыры, требуется скорость выше скорости света, но это невозможно!

Совет

Это означает, что звезда такого рода будет невидимой, поскольку даже свету не удастся преодолеть ее мощную гравитацию. Эйнштейн объяснял этот факт через явление отклонения света под воздействием гравитационного поля.

В реальности вблизи черной дыры пространство-время настолько искривлено, что траектории световых лучей также замыкаются на самих себе.

Для того чтобы превратить Солнце в черную дыру, мы должны будем сосредоточить всю его массу в шаре радиусом 3 км, а Земля должна будет превратиться в шарик радиусом 9 мм!

Виды черных дыр

Еще около десяти лет назад наблюдения позволяли предположить существование двух видов черных дыр: звездных, масса которых сравнима с массой Солнца или ненамного превышает ее, и сверхмассивных, масса которых — от нескольких сотен тысяч до многих миллионов масс Солнца. Однако относительно недавно рентгеновские изображения и спектры высокого разрешения, полученные с искусственных спутников типа «Чандра» и «ХММ-Ньютон», вывели на авансцену третий тип черной дыры —с массой средней величины, превосходящей массу Солнца в тысячи раз.

Звездные черные дыры

Звездные черные дыры стали известны раньше других. Они формируются тогда, когда звезда большой массы в конце своего эволюционного пути исчерпывает запасы ядерного горючего и коллапсирует сама в себя из-за собственной гравитации.

Потрясающий звезду взрыв (это явление известно под названием «взрыва сверхновой») имеет катастрофические последствия: если ядро звезды превосходит массу Солнца более чем в 10 раз, никакая ядерная сила не способна противостоять гравитационному коллапсу, результатом которого будет появление черной дыры.

Сверхмассивные черные дыры

Иное происхождение имеют сверхмассивные черные дыры, впервые отмеченные в ядрах некоторых активных галактик.

Относительно их рождения есть несколько гипотез: звездная черная дыра, которая в течение миллионов лет пожирает все окружающие ее звезды; слившееся воедино скопление черных дыр; колоссальное газовое облако, коллапсирующее непосредственно в черную дыру. Эти черные дыры являются одними из самых насыщенных энергией объектов космоса.

Они расположены в центрах очень многих галактик, если не всех. Наша Галактика тоже имеет такую черную дыру. Иногда благодаря наличию такой черной дыры ядра этих галактик становятся очень яркими.

Галактики с черными дырами в центре, окруженными большим количеством падающего вещества и, следовательно, способными произвести колоссальное количество энергии, называются «активными», а их ядра —«активными ядрами галактик» (AGN). Например, квазары (самые удаленные от нас космические объекты, доступные нашему наблюдению) являются активными галактиками, у которых мы видим только очень яркое ядро.

Средние и «мини»

Еще одной тайной остаются черные дыры средней массы, которые, согласно недавним исследованиям, могут оказаться в центре некоторых шаровых скоплений, таких, например, как М13 и NCC 6388. Многие астрономы высказываются об этих объектах скептически, но некоторые новейшие исследования позволяют предположить наличие черных дыр средних размеров даже недалеко от центра нашей Галактики.

Английский физик Стивен Хокинг выдвинул также теоретическое предположение о существовании четвертого вида черной дыры — «мини-дыры» с массой лишь в миллиард тонн (что примерно равно массе большой горы). Речь идет о первичных объектах, то есть появившихся в первые мгновения жизни Вселенной, когда давление было еще очень высоким.

Впрочем, пока не обнаружено ни одного следа их существования.

Как найти черную дыру

Всего несколько лет назад над черными дырами «зажегся свет».

Благодаря постоянно совершенствуемым приборам и технологиям (как наземным, так и космическим) эти объекты становятся все менее загадочными; точнее, менее загадочным становится окружающее их пространство.

В самом деле, коль скоро сама черная дыра невидима, мы можем распознать ее только в том случае, если она окружена достаточным количеством вещества (звезд и горячего газа), обращающегося вокруг нее на небольшом удалении.

Наблюдая за двойными системами

Некоторые звездные черные дыры были обнаружены в процессе наблюдения орбитального движения звезды вокруг невидимого компаньона по двойной системе. Тесные двойные системы (то есть состоящие из двух очень близких друг к другу звезд), один из компаньонов в которых невидим, — излюбленный объект наблюдений астрофизиков, ищущих черные дыры.

Указанием на наличие черной дыры (или нейтронной звезды) служит сильная эмиссия рентгеновских лучей, вызванная сложным механизмом, который можно схематически описать следующим образом.

Благодаря своей мощной гравитации черная дыра может вырывать вещество из звезды-компаньона; этот газ распределяется в форме плоского диска и падает по спирали в черную дыру.

Трение, возникающее в результате столкновений частичек падающего газа, нагревает внутренние слои диска до нескольких миллионов градусов, что вызывает мощное излучение рентгеновских лучей.

Наблюдения в рентгеновских лучах

Проводящиеся уже несколько десятилетий наблюдения в рентгеновских лучах объектов нашей Галактики и соседних галактик позволили обнаружить компактные двойные источники, примерно десяток из которых представляет собой системы, содержащие кандидатов в черные дыры.

Обратите внимание

Основной проблемой является определение массы невидимого небесного тела. Значение массы (пусть и не очень точное) можно найти, изучая движение компаньона или, что намного труднее, измеряя интенсивность рентгеновского излучения падающего вещества.

Эта интенсивность связана уравнением с массой тела, на которое падает это вещество.

Нобелевский лауреат

Нечто подобное можно сказать и в отношении сверхмассивных черных дыр, наблюдаемых в ядрах многих галактик, массы которых оцениваются через измерение орбитальных скоростей газа, проваливающегося в черную дыру.

В этом случае вызванный мощным гравитационным полем очень крупного объекта быстрый рост скорости газовых облаков, обращающихся по орбите в центре галактик, выявляется наблюдениями в радиодиапазоне, а также в оптических лучах.

Наблюдения в рентгеновском диапазоне могут подтвердить повышенное выделение энергии, вызванное падением вещества внутрь черной дыры. Исследования в рентгеновских лучах в начале 1960-х годов начал работавший в США итальянец Риккардо Джаккони.

Присужденная ему в 2002 году Нобелевская премия стала признанием его «новаторского вклада в астрофизику, что привело к открытию в космосе источников рентгеновского излучения».

Лебедь X-1: первый кандидат

Наша Галактика не застрахована от наличия объектов-кандидатов в черные дыры. К счастью, ни один из этих объектов не находится настолько близко к нам, чтобы представлять опасность для существования Земли или Солнечной системы.

Несмотря на большое количество отмеченных компактных источников рентгеновского излучения (а это наиболее вероятные кандидаты для нахождения там черных дыр), у нас нет уверенности в том, что они на самом деле содержат черные дыры.

Единственным среди этих источников, не имеющим альтернативной версии, является тесная двойная система Лебедь X-1, то есть наиболее яркий источник рентгеновского излучения, в созвездии Лебедь.

Массивные звезды

Эта система, орбитальный период которой составляет 5,6 суток, состоит из очень яркой голубой звезды большого размера (ее диаметре 20 раз превосходит солнечный, а масса — примерно в 30 раз), легко различимой даже в ваш телескоп, и невидимой второй звезды, масса которой оценивается в несколько солнечных масс (до 10).

Расположенная на расстоянии 6500 световых лет от нас вторая звезда была бы отлично видна, если бы она была обычной звездой.

Ее невидимость, производимое системой мощное рентгеновское излучение и, наконец, оценка массы заставляют большинство астрономов думать о том, что это — первый подтвержденный случай обнаружения звездной черной дыры.

Сомнения

Важно

Впрочем,есть и скептики. Среди них один из крупнейших исследователей черных дыр физик Стивен Хокинг. Он даже заключил пари с американским коллегой Килом Торном — ярым сторонником классификации объекта Лебедь X-1 как черной дыры.

Спор о сущности объекта Лебедь X-1 — не единственное пари Хокинга. Посвятив несколько девятилетий теоретическим исследованиям черных дыр, он убедился в ошибочности своих прежних представлений об этих загадочных объектах..

В частности, Хокинг предполагал, что вещество после падения в черную дыру исчезает навсегда, а с ним исчезает и весь его информационный багаж.

Он был настолько в этом уверен, что заключил на эту тему в 1997 году пари с американским коллегой Джоном Прескйллом.

Признание ошибки

21 июля 2004 года в своем выступлении на конгрессе по теории относительности в Дублине Хокинг признал правоту Прескилла. Черные дыры не приводят к полному исчезновению вещества.

Более того, они обладают определенного рода «памятью». Внутри них вполне могут храниться следы того, что они поглотили.

Таким образом, «испаряясь» (то есть медленно испуская излучение вследствие квантового эффекта), они могут возвращать эту информацию нашей Вселенной.

Черные дыры в Галактике

Астрономы еще питают множество сомнений относительно наличия в нашей Галактике звездных черных дыр (подобных той, что принадлежит двойной системе Лебедь X-1); но в отношении сверхмассивных черных дыр сомнений гораздо меньше.

В центре

В нашей Галактике имеется минимум одна сверхмассивная черная дыра. Ее источник, известный под именем Стрелец А*, точно локализован в центре плоскости Млечного Пути. Его название объясняется тем, что это самый мощный радиоисточник в созвездии Стрелец. Именно в этом направлении расположены как геометрический, так и физический центры нашей галактической системы.

Находящаяся на расстоянии около 26000 световых лет от нас сверхмассивная черная дыра, связанная с источником радиоволн Стрелец А*, обладает массой, которая оценивается примерно в 4 млн солнечных масс, заключенных в пространстве, объем которого сравним с объемом Солнечной системы.

Ее относительная близость к нам (эта сверхмассивная черная дыра, без сомнения, ближайшая к Земле) стала причиной того, что в последние годы объект подвергся особенно глубокому исследованию при помощи космической обсерватории «Чандра».

Выяснилось, в частности, что он также представляет собой мощный источник рентгеновского излучения (но не столь мощный, как источники в активных ядрах галактик). Стрелец А*, возможно, является «спящим» остатком того, что миллионы или миллиарды лет назад было активным ядром нашей Галактики.

Вторая черная дыра?

Впрочем, некоторые астрономы считают, что в нашей Галактике имеется еще один сюрприз. Речь идет а второй черной дыре средней массы, удерживающей вместе скопление молодых звезд и не позволяющей им упасть в сверхмассивную черную дыру, расположенную в центре самой Галактики.

Как же может быть, чтобы на расстоянии меньше одного светового года от нее могло находиться звездное скопление возраста, едва достигшего 10 млн лет, то есть, по астрономическим меркам, очень молодое? По мнению исследователей, ответ заключается в том, что скопление родилось не там (среда вокруг центральной черной дыры слишком враждебна для звездообразования), но было «притянуто» туда благодаря существованию внутри него второй черной дыры, которая и обладает массой средних значений.

На орбите

Отдельные звезды скопления, притянутое сверхмассивной черной дырой, начали смещаться в сторону галактического центра. Однако вместо того чтобы рассеяться в космосе, они остаются собранными вместе благодаря притяжению второй черной дыры, расположенной в центре скопления. Масса этой.

черной дыры может быть оценена на основании ее способности держать «на поводке» целое звездное скопление. Черная дыра средних размеров, видимо, совершает оборот вокруг центральной черной дыры примерно за 100 лет.

Это означает, что продолжительные наблюдения в течение многих лет позволят нам ее «увидеть».

Источник: http://mir-znaniy.com/vse-o-chernyih-dyirah/

Черные дыры

Черные дыры являются загадочными и мало изученными объектами во Вселенной. Итак, почему черные? – Масса этих объектов настолько огромна, что благодаря возникающей гигантской гравитационной силе, дыра поглощает всю материю и даже свет не может ее покинуть. Поэтому, для наблюдателя она кажется черной.

Виды черных дыр

По мнению современных ученых, существуют разные виды черных дыр, классифицирующие эти небесные тела по размеру, массе, свойствам и истории возникновения.

Один из них – это сверхмассивные черные дыры с массой, превышающей массу звезд в миллионы раз.

Теоретически, такие дыры находятся в центрах галактик и поглощают всю окружающую их материю, включая огромные звезды и меньшие по размеру черные дыры.

Совет

Другой вид – это черные дыры размером, сопоставимым размерам среднестатистической звезды. Рождаются такие дыры в результате смерти гигантских звезд, которые в 10 раз тяжелее нашего Солнца. Это происходит потому, что при окончании жизни звезды на ней прекращаются термоядерные процессы, расширяющие ее при жизни, и под действием сил гравитации она резко сжимается.

Ну, и, наконец, третий вид – это первичные гипотетические черные дыры, образовавшиеся, по мнению астрофизиков, вскоре после Большого взрыва. Размер таких дыр сопоставим с размером атома. Реальность существования третьего вида на сегодняшний день не доказана.

Исследование черных дыр осуществляется с помощью рентгеновского излучения, которое возникает при поглощении черной дырой материи. Данное излучение появляется в результате разогрева поглощаемой материи до очень высоких температур.

Современные американские и канадские исследователи утверждают, что материал, содержащийся в черных дырах, можно рассматривать как “совершенную жидкость” с очень низкой вязкостью в сотни раз меньшей, чем у воды.

При этом температура внутри черной дыры составляет триллионы градусов Цельсия, при которой вещество разрушается и превращается в бульон, состоящий из субатомных частиц.

Такое состояние вещества было возможно только в первые доли секунды после Большого взрыва.

Сегодняшняя концепция чёрных дыр возникла из общей теории относительности Эйнштейна, в соответствии с которой, если вещество сжимать, то его гравитация станет настолько сильной, что появится область пространства, за которую ничто не сможет вырваться.

Границу этой области назвали горизонтом событий чёрной дыры. Объекты могут оказаться внутри неё, но наружу выйти не могут. Представьте, чтобы наша Земля стала чёрной дырой, ее нужно сжать до радиуса в 9 мм! Современные ученые возлагают большие надежды на .Большой адронный коллайдер, который поможет понять природу черных дыр.

Источник: https://otaynah.ru/chernye-dyry

Как работает чёрная дыра » Познавательно-развлекательный блог

Чёрными дырами принято считать области пространства, в которых гравитация настолько сильна, что ни излучение, ни вещество не в состоянии эту область покинуть, – так как для тел, находящихся в поле притяжения этих космических объектов, собственная скорость убегания должна превышать скорость света, что, в принципе, невозможно. Границу области, из-за которой не может прорваться даже свет, называют «горизонтом событий» черной дыры.

Американский физик Джон Арчибальд Уиллер только в 1967 году предложил этому космическому объекту, всё поглощающему и ничего не выпускающему, название «чёрная дыра». Ранее использовались такие обозначения, как «коллапсар» или «застывшая звезда».

Поиском чёрных дыр учёные занимаются уже много десятилетий, но поскольку найти «чёрную кошку в тёмной комнате» не так-то просто, приходится ориентироваться на обычные звёзды и другие космические объекты, взаимодействующие с чёрными дырами, – и по их поведению измерять параметры и отслеживать влияние дыр на окружающее космическое пространство.

Обратите внимание

Изучать же эти объекты в лабораторных условиях невозможно, потому как для создания чёрной дыры тело с массой в миллионы тонн необходимо сжать до размеров атома. Теоретическое изучение, основанное на общей теории относительности Альберта Эйнштейна, находит многочисленные подтверждения в цифрах и снимках орбитальных телескопов.

Расчёты показывают, что достаточной массой для превращения в чёрные дыры обладают лишь звёзды, чья масса превышает три солнечных, поэтому для начала на них и остановимся. Пока звезда молода и активна, она обладает запасом ядерного топлива.

Термоядерные реакции превращения водорода в гелий, затем в углерод (и так далее) поддерживают равновесие звезды, поскольку выделяющееся при этом тепло компенсирует энергетические потери, которые мы понимаем как свет и звёздный ветер.

Эти же реакции поддерживают высокое давление внутри звезды, не позволяя ей сжиматься под действием собственного гравитационного поля. Однако проходит несколько миллиардов лет, и в конце звёздной эволюции ядерное топливо начинает истощаться.

В результате её ядро и мантия переживают противоположные процессы: ядро начинает сжиматься, при этом выделяя большое количество тепла, которое нагревает внешнюю оболочку. Звезда теряет свои внешние слои, непомерно расширяющиеся в огненную туманность, разрушающую собственную планетарную систему. Если же речь идёт о сверхновой – то оболочка обычно уничтожается взрывом.

Итак, ядро массивной звезды сжимается и уходит под «горизонт событий», – и если бы мы могли наблюдать за этими метаморфозами в телескоп, то сначала увидели бы, что звезда с увеличивающейся скоростью уменьшается, а свет слабеет и краснеет, что объяснимо потерей фотонами энергии по мере приближения к поверхности гравитационного радиуса, необходимостью преодолевать увеличивающуюся силу тяжести, вследствие чего частицам требуется всё большее количество времени, чтобы добраться до Земли (вернее, было необходимо, – ведь процессы, которые мы наблюдаем, происходилицелую вечность тому назад). Далее мы увидели бы, что сжатие замедляется, и в тот момент, когда оно совсем остановится, визуальное наблюдение новой чёрной дыры становится невозможным.

Но если бы мы могли себе это позволить, и заглянуть за «горизонт событий», то обнаружили бы следующую картину: за короткий промежуток времени вещество ядра сжимается в точку, называемую «сингулярностью».

В ней достигаются бесконечно большие значения тяготения и плотности.

Английский физик Стивен Хоукинг назвал сингулярность «местом, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени».

Первоначальная звезда могла быть устроена сколь угодно сложно, однако новообразованная чёрная дыра «забывает» всю информацию об исходной модели: форму, химический состав, распределение плотности вещества и др. После сжатия наблюдатель может определить всего три основных параметра: электрический заряд, полную массу и момент импульса, присутствующий в случае, если звезда ранее вращалась.

В последнем случае вокруг черной дыры сохраняется гравитационное поле «вихревого» принципа действия, которое увлекает соседние космические тела во вращательное движение вокруг нее. Это поле получило имя математика Роя Керра, который нашел решение его расчётных уравнений в 1963 году.

Эффект поля Керра усиливается по мере приближения к горизонту чёрной дыры, – тоесть возле неё существует определённая зона космического пространства, с одной стороны ограниченная «горизонтом событий» дыры и ведущей к неминуемой гибели всех объектов в недрах сингулярности, а с другой стороны – чертой, за которой эти объекты не притягиваются и остаются неподвижными относительно далёких звёзд. Эта черта называется «пределом статичности».

Важно

В радиусе действия поля Керра, или так называемой «эргосфере», объекты могут двигаться только по орбите вокруг нового центра тяготения, причём в том же направлении, в котором вращается сама дыра.

Попав в эргосферу, кванты света или, если уж на то пошло, летательный аппарат всё ещё могут вырваться наружу, унося при этом энергию вращения сверхсистемы, но стационарным космическим телам остаётся скромный удел: водить космический «хоровод» вокруг гиганта и становиться его добычей.

Следуя эйнштейновской общей теории относительности, близи чёрных дыр под действием их гравитационного поля искривляется пространство и время (здесь будет применимо пересечение или разбежность параллельных прямых, замедление часов и все прочие ныне доказанные «легенды» учёного).

Для того чтобы представить себе, как ведёт себя время около чёрной дыры, сравним его с земным. Несмотря на то, что наша планета – просто пылинка в сравнении с чёрными дырами, земная гравитация влияет на ход времени на поверхности сильнее, чем на орбите – настолько, что в GPS-навигаторы специально вносят поправки на это различие.

Чего же тогда ожидать от объектов с такой чудовищным притяжением и массой, как у чёрных дыр?

Здесь напряженность гравитационного поля настолько велика, что любые физические процессы можно описывать лишь при помощи релятивистской (относительной колебаниям нейтрона) теории тяготения.

Одним словом, всё это подводит нас к выводу, что чёрная дыра способна искривлять геометрию пространства и времени вокруг себя, и чем ближе – тем сильнее этот эффект, вплоть до того, что лучи света могут двигаться по её окружности.

Но неужели любая звезда рано или поздно начинает разрушать то, что создавалось с таким трудом под её светом и теплом? Повторимся: это не так.

Совет

По оценкам экспертов, при умеренной начальной массе звезды ядро может сжиматься, превратиться в маленький и очень плотный белый карлик, или в еще более плотную и совсем крохотную нейтронную звезду, которые затем сохранят устойчивость: его сжатие будет остановлено давлением вырожденного вещества, и «битва с гравитацией» будет выиграна.

Поэтому для тех, кто твёрдо намерен прожить ещё пять-семь миллиардов лет, это хорошая новость.

Правда, наблюдать за солнечным белым карликом придётся из подземного бункера, так как испаряющаяся мантия перед этим расширится, поглотит Меркурий и Венеру, заодно лишив землю воды и практически полностью – атмосферы.

Если же масса звезды превышает три массы Солнца, то уже ничто не в силах остановить ее коллапса, – она уйдёт под горизонт событий и рано или поздно станет новой чёрной дырой.

Согласно расчётам учёных, наша галактика существует двенадцать миллиардов лет, и за это время должно было образоваться несколько десятков миллионов черных дыр, основная масса которых предположительно находится в ядре Млечного Пути, где коллапсировали наиболее массивные древние звёзды.

Источник: http://nauka-prosto.ru/page/kak-rabotaet-chjornaja-dyra

Черные дыры

Главная / Космические объекты / Черные дыры

Некоторые вспышки сверхновых, могут разрушить звезду, которая их и создала. Но взрывы сверхновых редко приводят к таким крайним последствиям. Многие звездные ядра просто неспособны породить нейтронную звезду, но взамен образуют уникальные объекты, в том числе и черные дыры.

Долгие годы ученые-физики рассматривали их лишь как теоретические модели, потому что само существование черных дыр, долгое время было под вопросом. Однако теперь, есть вероятность, что большая часть материи во Вселенной может быть заключена в черные дыры, да и вся вселенная на самом деле, может оказаться черной дырой.

Область некоего пространства, в которой гравитационное притяжение настолько велико, что ни излучение, ни вещество, не могут покинуть эту область, называют черной дырой.

Для любых тел, которые там находятся и собирающихся покинуть черную дыру, вторая космическая скорость (или, как ее называют ученые — «скорость убегания») должна быть больше скорости света. По законам физики – это не невозможно в принципе, потому что ни вещество, ни излучение не могут двигаться быстрее скорости света.

Поэтому, всё, что попадает в черную дыру, уже не может ее покинуть. У черной дыры есть свои границы. Например, границу области, за которую не выходит свет, называют «горизонтом событий» или «горизонтом» черной дыры.

 Строение черных дыр

Точное строение черных дыр, до сих пор неизвестно человечеству, но мнения о ее свойствах известны давно. Известный английский астроном и геофизик Джон Митчелл предположил, что в космическом пространстве могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность.

Митчелл использовал законы Ньютона для своих расчетов. Он предполагал, что если бы звезда с массой Солнца имела радиус не более трех километров, то даже мельчайшие частицы света не смогли бы удалиться от такой звезды. Поэтому издалека, такая звезда казалась бы полностью темной.

Вскоре, Митчелл представил свою идею на заседании Лондонского общества в ноябре 1783.

Обратите внимание

На протяжении веков эта идея о черных дырах была основной, но в 1916 году, немецкий астроном Карл Шварцшильд получил точное решение уравнений релятивистской теории гравитации (которую создал Альберт Эйнштейн) – общей теории относительности. Согласно теории, пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величина rg называется «шварцшильдовским радиусом», а горизонт событий – шварцшильдовской поверхностью.

Открытие нейрона и создание квантовой механики в 1930-е годы, позволило физикам исследовать возможность формирования компактных объектов, таких как: нейтронные звезды и белые карлики. Научные эксперименты показали, что после истощения ядерного топлива в недрах звезды, ядро имеет шанс сжаться, превратившись в плотный и маленький белый карлик или нейтронную звезду.

Источник: http://kosmos-gid.ru/kosmicheskie_obekty/chernye_dyry/

10 фактов о черных дырах, которые должен знать каждый

Черные дыры — это, пожалуй, самые загадочные объекты Вселенной. Если, конечно, где-то в глубинах не скрываются вещи, о существовании которых мы не знаем и знать не можем, что вряд ли.

Черные дыры — это колоссальная масса и плотность, сжатая в одну точку небольшого радиуса. Физические свойства этих объектов настолько странные, что заставляют ломать голову самых искушенных физиков и астрофизиков.

Сабина Хоссфендер, физик-теоретик, сделала подборку десяти фактов о черных дырах, которые должен знать каждый.

Что такое черная дыра?

Определяющим свойством черной дыры является ее горизонт. Это граница, преодолев которую ничто, даже свет, не сможет вернуться обратно. Если отделенная область становится отделенной навсегда, мы говорим о «горизонте событий».

Если же она только временно отделена, мы говорим о «видимом горизонте». Но это «временно» также может означать, что область будет отделенной гораздо дольше нынешнего возраста Вселенной.

Если горизонт черной дыры является временным, но долгоживущим, разница между первым и вторым расплывается.

Насколько большие черные дыры?

Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра.

Важно

По сравнению со звездными объектами, впрочем, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров.

Это в 10 000 000 000 раз меньше настоящего радиуса Земли.

Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.

Что происходит на горизонте?

Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства.

Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта.

Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.

То, что вы испытываете на горизонте, зависит от приливных сил гравитационного поля. Приливные силы на горизонте обратно пропорциональны квадрату массы черной дыры. Это означает, что чем больше и массивнее черная дыра, тем меньше силы.

И если только черная дыра будет достаточно массивна, вы сможете преодолеть горизонт еще до того, как заметите, что что-то происходит.

Эффект этих приливных сил растянет вас: технический термин, который для этого используют физики, называется «спагеттификация».

Совет

В первые дни общей теории относительности считалось, что на горизонте существует сингулярность, но это оказалось не так.

Что внутри черной дыры?

Никто не знает наверняка, но точно не книжная полка.

Общая теория относительности прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, вы уже не можете попасть куда-либо еще, кроме как в сингулярность.

Соответственно, ОТО лучше не использовать в этих местах — она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнанно, что эта теория заменит сингулярность чем-то другим.

Как образуются черные дыры?

В настоящее время мы знаем о четырех разных способах образования черных дыр. Лучше всего понимаем связанный со звездным коллапсом. Достаточно большая звезда образует черную дыру после того, как ее ядерный синтез прекращается, потому что все, что уже можно было синтезировать, было синтезировано.

Когда давление, создаваемое синтезом, прекращается, вещество начинает проваливаться к собственному гравитационному центру, становясь все более плотным. В конце концов, оно настолько уплотняется, что ничто не может преодолеть гравитационное воздействие на поверхность звезды: так рождается черная дыра.

Эти черные дыры называются «черными дырами солнечной массы» и наиболее распространены.

Следующим распространенным типом черных дыр являются «сверхмассивные черные дыры», которые можно найти в центрах многих галактик и которые имеют массы примерно в миллиард раз больше, чем черные дыры солнечной массы. Пока доподлинно неизвестно, как именно они формируются.

Считается, что когда-то они начинались как черные дыры солнечной массы, которые в густонаселенных галактических центрах поглощали множество других звезд и росли.

Обратите внимание

Тем не менее они, похоже, поглощают вещество быстрее, чем предполагает эта простая идея, и как именно они это делают — все еще остается предметом исследований.

Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.

Наконец, есть очень умозрительная идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.

Откуда мы знаем, что черные дыры существуют?

У нас есть много наблюдательных доказательств существования компактных объектов с крупными массами, которые не излучают свет. Эти объекты выдают себя по гравитационному притяжению, например, за счет движения других звезд или газовых облаков вокруг них.

Они также создают гравитационное линзирование. Мы знаем, что у этих объектов нет твердой поверхности.

Это вытекает из наблюдений, потому что вещество, падая на объект с поверхностью, должно вызывать выброс большего числа частиц, чем вещество, падающее сквозь горизонт.

Почему в прошлом году Хокинг сказал, что черные дыры не существуют?

Он имел в виду, что черные дыры не имеют вечного горизонта событий, а только временный кажущийся горизонт (см. пункт первый). В строгом смысле только горизонт событий считается черной дырой.

Как черные дыры испускают излучение?

Черные дыры испускают излучение за счет квантовых эффектов. Важно отметить, что это квантовые эффекты вещества, а не квантовые эффекты гравитации. Динамическое пространство-время коллапсирующей черной дыры меняет само определение частицы.

Важно

Подобно течению времени, которое искажается рядом с черной дырой, понятие частиц слишком зависимо от наблюдателя. В частности, когда наблюдатель, падающий в черную дыру, думает, что падает в вакуум, наблюдатель далеко от черной дыры думает, что это не вакуум, а полное частиц пространство.

Именно растяжение пространства-времени вызывает этот эффект.

Впервые обнаруженное Стивеном Хокингом, испускаемое черной дырой излучение называется «излучением Хокинга». Это излучение имеет температуру, обратно пропорциональную массе черной дыры: чем меньше черная дыра, тем выше температура. У звездных и сверхмассивных черных дыр, которые мы знаем, температура значительно ниже температуры микроволнового фона и поэтому не наблюдается.

Что такое информационный парадокс?

Парадокс потери информации обусловлен излучением Хокинга. Это излучение сугубо термическое, то есть случайно и из определенных свойств имеет только температуру. Излучение само по себе не содержит никакой информации о том, как сформировалась черная дыра.

Но когда черная дыра испускает излучение, она теряет массу и сокращается. Все это совершенно не зависит от вещества, которое стало частью черной дыры или из которого она образовалась. Выходит, зная только конечное состояние испарения нельзя сказать, из чего сформировалась черная дыра.

Этот процесс «необратим» — и загвоздка в том, что в квантовой механике нет такого процесса.

Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга.

В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера.

Говорят, он появится в конце сентября.

Совет

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

Источник: https://Hi-News.ru/science/10-faktov-o-chernyx-dyrax-kotorye-dolzhen-znat-kazhdyj.html

Ссылка на основную публикацию